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Gentlemen:

This technical report culminates nearly three years of Mariner/Voyager
studies at Boeing. During this time, we have gained an appreciation of the
magnitude of the task, and feel confident that the experience, resources
and dedication of The Boeing Voyager Team can adequately meet the challenge.

The Voyager management task is accentuated by three prime requirements:

An inflexible schedule of launch opportunities; the need for an information-
retrieval system capable of reliable high-traffic transmission over inter-
planetary distances; and a spacecraft design flexible enough to accommodate
a number of different mission requirements. We believe the technical
approach presented here satisfies these design requirements, and that
management techniques developed by Boeing for space programs will assure
delivery of operable systems at each critical launch date.

Mr. E. G. Czarnecki has been assigned program management responsibility.
His group will be ably assisted by Electro-Optical Systems in the area of
spacecraft power, Philco Western Development Laboratories will be respon-
sible for telecommunications, and the Autonetics Division, North American
Aviation will provide the auto-pilot and attitude reference system. This
team has already demonstrated an excellent working relationship during the
execution of the Phase IA contract, and will have my full confidence and
support during subsequent phases.

This program will report directly to George H. Stoner, Vice President and
Assistant Division Manager for Launch and Space Systems. Mr. Stoner has

the authority to assign the resources necessary to meet the objectives as
specified by JPL.

The Voyager Spacecraft System represents to us more than a business oppor-
tunity or a new product objective. We view it as a chance to extend
scientific knowledge of the universe while simultaneously contributing

to national prestige and we naturally look forward to the opportunity of

sharing in this adventure.

Lysle A. Wood
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INTRODUCTION

In fulfillment of the Jet Propulsion Laboratory (JPL) Contract 951111,

the Aero-Space Division of The Boeing Company submits the Voyager Space-

craft Final Technical Report. The complete report, responsive to the

documentation requirements specified in the Statement of Work, consists

of the five following documents:

BOEING
DOCUMENT
VOLUME TITLE NUMBER
A Preferred Design Flight Spacecraft and
Hardware Subsystems D2-82709-1
Part I
Section 1.0 Voyager 1971 Mission Objectives
and Design Criteria
Section 2.0 Design Characteristics and
Restraints
Section 3.0 System Level Functional Descriptions
of Flight Spacecraft
Part II
Section 4.0 Functional Description for Space-
craft Hardware Subsystems
Part IIT
Section 5.0 Schedule and Implementation Plan
Section 6.0 System Reliability Summary
Section 7.0 Integrated Test Plan Development
B Alternate Designs Considered--Flight Spacecraft D2-82709-2
and Hardware Subsystems
C Design for Operational Support Equipment D2-82709-3
D Design for 1969 Test Spacecraft D2-82709-4
E Design for Operational Support Equipment

for 1969 Test Flight Spacecraft D2-82709-5
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For convenience the highlights of the above documentation have been sum-

marized to give an overview of the scope and depth of the technical

effort and management implementation plans produced during Phase IA.

This summary is contained in Volume O, Program Highlights and Management

Philosophy, D2-82709-0. A number of supporting documents are provided ®
to furnish detailed information developed through the course of the

contract and to provide substantiating reference material which would

not otherwise be readily available to JPL personnel. Additionally, a

full scale mockup of the preferred design spacecraft has been assembled.

This mockup, shown in Figure 1, has been delivered to JPL. The mockup

has been provided with the view that it would be of value to JPL in sub-

sequent Voyager Spacecraft System planning. Mr. William M. Allen,

President of The Boeing Company, Mr. Lysle A. Wood, Vice-President and

Aero-Space Division General Manager, Mr. George H. Stoner, Vice-President o
and Assistant Division Manager responsible for Launch and Space Systems

activities, and Mr. Edwin G. Czarnecki, Voyager Program Manager, are

shown with the mockup.

During the 3-month period covered by Contract 951111, Boeing has:

1) Performed system analysis and trade studies necessary to achieve
an optimum or preferrad design of the Flight Spacecraft.

2) Determined the requirements and constraints which are imposed upon
the Flight Spacecraft by the 1971 mission and by the other systems ®
and elements of the project, including the science payload.

3) Developed functional descriptions for the Flight Spacecraft and for

each of its hardware subsystems, excluding the science payload.
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Figure 1. Preferred Design Mockup
Left to Right:

William M. Allen
Edwin G. Czarnecki
Lysle A. Wood
George H. Stoner
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4) Determined the requirements for the Flight Spacecraft associated
Operational Support Equipment (OSE) necessary to accomplish the
Voyager 1971 mission.

5) Developed a preliminary design of the OSE.

6) Developed functional descriptions for the OSE.

7) Determined the objectives of a 1969 test flight and the design of
the 1969 Test Flight Spacecraft using the Atlas/Centaur Launch
Vehicle. An alternate test flight program is presented which
utilizes the Saturn 1B/Centaur Launch Vehicle.

8) Deveoped functional descriptions for the Flight Spacecraft Bus, and
its hardware subsystems, and OSE for the 1969 test spacecraft.

9) Updated and supplemented the Voyager Implementation Plan originally

contained in the response to JPL Request for Proposal 3601.

The Voyager program management Team, shown in Figure 2 is under the
direction of Mr. Edwin G. Czarnecki. Mr. Czarnecki is the single
executive responsible to JPL and Boeing management for the accomplish-
ment of the Voyager Spacecraft Phase IA, and.will direct subsequent
phases of the program. He reports directly to Mr. George H. Stoner
who has the authority to commit those corporate resources necessary to

fulfill JPL's Voyager Spacecraft System objectives.

Although Boeing has a technical management capability in all aspects
of the Voyager Program, it is planned to extend this capability in
depth through association with companies recognized as specialists in
certain fields. Use of team members to strengthen Boeing's capability

was considered early during pre-proposal activities. The basic concept
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was to add team members who would complement Boeing experience and
capability, and significantly improve the amount and quality of tech-
nical and management activities. Based upon competitive considerations
including experience and past performance and giving strongest emphasis
to technical qualifications and management willingness to support the
Voyager effort, Autonetics, Philco Western Deveopment Laboratories, and
Electro-Optics Systems were chosen as team members. This team arrange-
ment, subject to JPL approval, is shown in Figure 3. The flight space-
craft design and integration task to be accomplished by this team is
illustrated in Figure 4. Discussions leading to the formation of this
team were initiated late in 1944, formal work statement agreements have
been arrived at, and there has been a continuous and complete free
exchange of information and documentation; permitting the Boeing team to

satisfy JPL's requirements in depth and with confidence.

BOEING VOYAGER TEAM
VOYAGER SPACECRAFT AND SPACE SCIENCES PAYLOAD INTEGRATION CONTRACTOR

The Boeing Company
Seattle, Washington

Mr. E. G. Czarnecki - Program Manager

SUBCONTRACTOR SUBCONTRACTOR SUBCONTRACTOR
Autonetics, North Philco, Western Development Electro-Optical Systems
American Aviation Laboratories Incorporated
Anaheim, California Palo Alto, California Pasadena, California

Autopilot Telecommunications Electrical Power
and Subsystem Subsystem
Attitude Reference
Subsystem
Mr. R. R. Mueller Mr. G. C. Moore Mr. C. I. Cummings
Program Manager Program Manager Program Manager
Figure 3
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SUMMARY ~-VOLUME A
The Boeing team's flight spacecraft represents a conservative design
based upon selection of space-proven components. The design meets the
objectives of the Voyager program for 1969 through 1977 opportunities.
The 250-pound science payload, as well as the 2300 or 4500 pound flight

capsule can be accommodated and all program and mission objectives

achieved.

The Voyager Spacecraft is shown in Figure 4 with equipment deployed in
the operational configuration. It is 30 feet wide from solar panel tip
to solar panel tip, and the body is 59-inches high. The 31-foot magnet-
ometer boom and 17- and 18-foot antenna booms are shown in position.
Estimated weight at this state of the preliminary design is 1565 pounds
for the spacecraft, and 3400 pounds for the propulsion module. A con-
tingency of 285 pounds of the specification weight of 5250 pounds is
available for selective use during the detail design phase. The 20
equipment modules are fastened to the central magnesium shell with
cooling provided by thermal radiation from the external faces of the

package. Thermal control is by space-facing louvers.

Outstanding design features of the Boeing team's Voyager Spacecraft are
its ability to perform reliably, transmit data to Earth at encounter at
the 50,000 bit-per~second rate generated in the science package, and
meet all mission energy requirements through 1977 with a single propul-
sion module design. Use of redundancy in critical components and

selection of proven designs requiring a minimum of additional development

10
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resulted in an overall mission success probability of 47 percent,

exceeding the specified 45 percent, including an allocation of 0.674

for the science payload.

The spacecraft can enter biologically safe orbits with periods as low

as 18 hours from Mars approach velocities as high as 3.5 km/sec., or with

periods less than 9 hours from approach velocities as high as 3.0 km/sec.

The 18-hour orbit provides coverage of four different swaths of Mars

surface in the first three days after encounter.

In 1971, orbits are available which have no occultation of Canopus or
the Sun for the first 60 days in orbit. The periapsis positions are at

southern latitudes and at illumination angles which favor the black and

g

white TV experiment. Some adjustment of periapsis position is available

with "off-periapsis" orbit insertion techniques. The "off-periapsis"
insertion technique allows the utilization of the fixed-total-impulse

solid motor for all approach velocities considered.

The telecommunications design includes completely redundant radio sub-
systems. It features an 8' x 12' paraboloidal high-gain antenna, two
S50-watt traveling wave tubes and bi-orthogonal block coding to obtain
the high data rate. The 50-watt tube selection is supported by three
separate tube designs including test data. Detailed link calculations
substantiate a positive communication link margin under worst-case

conditions at Mars encounter, with a calculated 48,000 bits per second

data rate. (Upon definition of the precise science payload data rate,

the telecommunications link can be optimized to that value.) For

13




BOESING

D2-82709-1

longer communication ranges, alternate lower data modes and two tape

recorders with storage capability for 2 x 1087bits of scientific data

~.

~—
are provided. Two 72,000 bit buffers provide temporary storage of

spacecraft engineering and capsule data.

The spacecraft propulsion subsystem consists of a solid motor with an
oblate spheroidal case for Mars orbit insertion and four 50-pound thrust,
jet vane controlled, hydrazine engines operating in pairs for midcourse
and orbit trim. The solid propellant motor with a specific impulse of
about 300 pounds force seconds per pound mass delivers 10,500 pounds
maximum thrust and burns regressively to provide not more than 2.2 g's
acceleration. Solid motor TVC is by a Freon secondary injection system.
With the available 2306 pounds of solid propellant, an orbit insertion
velocity increment of 5700 feet per second is attained. The 50-pound
thrust monopropellant engines with a specific impulse of 235 pound

force seconds per pound mass have multiple restarting capability. These
engines utilize the spontaneous decomposition catalyst. Hydrazine fuel

capacity is adequate for 929 total seconds of operation.

Reaction control is produced by expulsion of sterile nitrogen through

two redundant sets of eight .25 pound thrusters each, which are body-
mounted on the spacecraft. Four titanium tanks contain 60 pounds of

cold nitrogen for reaction control and propulsion requirement. The

45 pounds allocated to reaction control is adequate for the 6-month orbital
mission with a safety factor of 2. Under nominal conditions, the nitrogen
supply is adequate for four years. Both propulsion systems, plus the

reaction control subsystem, are assembled in a single sub-module mounted
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in the spacecraft. This modular arrangement permits complete assembly
and checkout, including sterilization, prior to installation on the
spacecraft. The propulsion and reaction control systems including all
fuel and gas supplies are sterilized to avoid planetary contamination

by propulsion ejecta.

The selected attitude reference and autopilot subsystems are comprised
of an attitude reference module, autopilot module, and coarse and fine
Sun sensors. The attitude reference module includes three redundant
Autonetics G-10 gas-bearing gyros, two redundant accelerometers, two
redundant Canopus sensors and two fine Sun sensors. The coars Sun
sensors are located on two solar panels. The autopilot is an analog
type and maintains spacecraft orientation to within +0.4 degree in
cruise, +0.2 degree in Mars orbit, and the 1limit cycle period is sever-
al hours. All selected components are existing designs with operation

and qualification experience.

The electrical power system is similar to Mariner IV, with three solar
panels, 8—1/2' x 13', consisting of two sections each. The total area
of 236 square feet provides 627 watts of power at the distance of Mars
from the Sun. A flat solar cell arrangement is used; three silver cad-
mium batteries are provided for use during off-Sun periods. The power
subsystem regulates and distributes the electrical power to subsystems
where additional power conditioning is performed. A 50-percent increase

in power is possible by addition of one section to each solar panel.

15
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The Voyager central computer and sequencer (CC&S) provides timing func-
tions and command signals to all other spacecraft subsystems. A magnetic
core memory provides storage for 256 21-bit words and a capability to
execute 333 different commands. The CC&S minimizes the need for detail
ground commands by incorporating preplanned operational sequences. All
commands and stored instructions can be monitored and controlled from the
ground for complete analysis and control during the entire mission. A
modified NASA Lunar Orbiter programmer has been selected as the basic
element. This memory-oriented digital computer has been space-qualified
and addition of redundant data processing and switching circuits provide

a highly reliable unit.

The spacecraft structure includes a simple truss base, 10 feet wide at
the bottom and 5 feet wide at the top, fabricated of 6AL4V titanium
tubing. This base attaches to the Centaur adapter and supports the
antenna and solar panel appendages. The electronic packages are con-
nected to a five-foot diameter, cylindrical, magnesium shell installed
above the truss. The flight capsule is supported by an adapter ring with

loads carried by four columns through the cylindrical shell.

A number of major technical problems were encountered and studied in
developing the preliminary design. The most significant of these were
as follows:

1) The assessment of the most reliable and highest power transmitter

tube meeting the Voyager requirements;

16
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The overall spacecraft magnetics problem with particular attentioh
to the magnetic focusing field for the traveling wave tube.
Availability and reliability of spacecraft recorders.
Selection of a reliable secondary battery with adequate recycle life.
Estimation of solar panel degradation from electromagnetic radiation
and meteoroids during the mission.
The trade-off between proven instruments versus new and inherently
simpler instruments.
Determination of the degree and type of redundancy, for example,

di tercnt
using two identical instruments of two diffexence designs.
The effect of the solid engine exhaust on the structure and solar
panel temperature.
Accommodating the length of the orbit insertion engine.
Selection of installation technique for the equipment packages.
Selection of the thrust vector control technique.

Effect of heat soak sterilization on equipment.

These problems are the key technical considerations in developing the

preferred design.

The subsystem® of the Boeing team's spacecraft provide a conservative and

highly reliable design. No state-of-the-art advances are required to meet

the design criteria for any subsystem.

17
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1.0 VOYAGER 1971 MISSION OBJECTIVES AND DESIGN CRITERIA

1.1 PROGRAM OBJECTIVES

The objectives and design criteria set forth in JPL Document 45,
"Preliminary Voyager 1971 Mission Specification," May 1, 1965, and
Document 46, "Voyager 1971 Mission Guidelines," May 1, 1965, have been
followed without exception and are summarized in Section 1.0 of this

volume.

The mission objectives and design criteria imposed on the Flight Space-
craft and its associated subsystems in performance of a flight mission
to the planet Mars during the 1971 opportunity are defined in consonance

with the following Voyager program objectives.

Primary--The primary objective is an orderly program of continuous
improvement of knowledge in science and technology to achieve the follow-
ing in an efficient, timely manner:

1) Scientific and engineering observations and experiments directed
toward extending Voyager Spacecraft System capability to operate
near the planet and on the planet surface, and the development of
this capability during the life of the program;

2) Scientific and engineering observations and experiments directed
toward extending the capability of the scientific instruments to
operate near the planet, and on the planet surface; specific def-
inition of future experiments concerning exobiology and planetology;

and development of this capability during the life of the program;
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3) Scientific observations and experiments concerning possible
biology and biochémistry of Mars;

4) Scientific observations and experiments concerning the physics
and chemistry of the Martian lithosphere and atmosphere directed
toward obtaining information essential to advancement of

planetology.
Secondary--The secondary objective is to perform certain field and
particle measurements in interplanetary space between the orbits of

Earth and Mars.

1.2 1971 MISSION OBJECTIVES

The primary objective of the 1971 mission is to develop and begin the
use of the basic capability to place significant payloads at Mars, con-
duct observations of Martian phenomena over extended periods, and trans-
mit the results of those observations to Earth. The objective is
ordered in the following way, with estimates of desired cumulative
probabilities of success for each flight stated for each subobjective.
1) Perform a successful launch and injection of the Planetary Vehicle
into a prescribed transfer -orbit (90 percent probability of
success).
2) Perform a successful spacecraft-capsule separation maneuver at a
preselected time and location (80 percent probability of success).
3) Place an operating Science Payload in a selected orbit about Mars
and perform the functions necessary to begin orbital operations

(65 percent probability of success).




4)

5)

6)

7)

8)
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Perform orbital operations to obtain data from the orbital Science
Payload and return the data to Earth for a specified time of 1
month and as long thereafter as possible (45 percent probability
of success).

Place the Flight Capsule on a selected impact trajectory to Mars
(75 percent probability of success).

Enter the Mars atmosphere and obtain data on the lower Mars atmos-
phere from the Capsule Science Payload (65 percent probability of
success).

Land the Flight Capsule, establish communications with Earth, and
return entry, landing, and system status data to Earth (45 percent
probability of success).

Perform landed operations to obtain data with Capsule Science Pay-
load over at least one Martian diurnal cycle and return the data

to Earth (35 percent probability of SuUCcess).

A secondary objective is to develop experience with both flight and

ground systems that are required for delivery and operation of the

Spacecraft Science Payload, for ferrying and separation of the capsule,

and for delivery and operation cf the Capsule Science Payload.

A tertiary objective is to make scientific and engineering observations

in interplanetary space during the transit flight from Earth to Mars and

transmit the resulting data back to Earth.
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A quaternary objective is to provide specific flight and ground designs
and equipment elements that will be compatible with subsequent Voyager

missions to Mars.

1.2.1 Flight Spacecraft Objectives ’

The specific objectives of the Flight Spacecraft are to deliver and
operate the Spacecraft Science Payload and to ferry and separate the

Flight Capsule.

The mission objectives of the Flight Spacecraft relative to scientific

measurements are to:

1) Search for the location and characteristics of life on Mars by use
of imaging and radiometric techniques;

2) Measure Mars atmospheric constituents and characteristics, includ-
ing refractive index variations, temperature profile, pressure
profile, Faraday rotation, and back and forward scattering;

3) Conduct detailed pictorial exploration of Mars, including (a)
definition of major geographical features; (b) determination of
geological characteristics in selected areas; (c) determination of ¢
color content and infrared radiation patterns at selected areas;
and (d) determination of meteorological phenomena such as cloud

structure, circulation patterns, and fog belts;

4) Measure the particle and field characteristics in the vicinity of

Mars; .
5) Improve knowledge of Mars gravitational field;
6) Measure albedo and phase characteristics of the planet at selected

wavelengths;
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7) Improve knowledge of Mars ephemeris;
8) Measure interplanetary particle and field characteristics, includ-

ing solar plasma, solar and galactic magnetic fields, particle

events, and micrometeoroid flux.

1.2.2 Flight Capsule Objectives

Although the 1971 mission objectives are oriented principally toward the

Flight Spacecraft, the Flight Capsule experimental objectives are in-

cluded to facilitate the investigation of interfaces and interactions.

The mission objectives of the Flight Capsule are to:

1) Make life detection measurements;

2) Measure the atmospheric characteristics in the Mars entry zone,
including composition profile and density profile;

3) Measure near-surface atmosphere and meteorological characteristics,

ct

including density, temperature, light scatterin and wind velocitys
b b b

—
N

Conduct a picterial survey in the vicinity of the landing site.

1.3 MISSION RESTRAINTS

Two Saturn IB/Shrouded Centaur Launch Vehicles will be provided for the
1971 opportunity. Launch Pads 34 and 37B at ETR will be used to permit
a launch separation interval as short as 2 days. The capability to

launch within a designated l-hour period is required.

A nominal launch opportunity of 50 days will be provided with a minimum

daily firing window of 2 hours.
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The design of the spacecraft will be compatible with the use of 85-foot
and 210-foot antennas operating at S-band. Three 85-foot antennas will
be employed from near spacecraft injection until near encounter with

Mars and the 210-foot antennas will be employed for the orbiting opera-
tions. Three 85-foot antenna station nets will be used for coverage ®
from near spacecraft injection to near planetary encounter. The

specific stations will be selected from the following complexes:
Johannesburg, South Africa; Madrid, Spain; Canberra and Woomera,
Australia; and Goldstone, California. The Goldstone, Canberra, and
Madrid 210-foot antenna will be used for coverage during the later phases
of transit and during the orbital and landed operations in the vicinity

of, and on, Mars.

Planetary Quarantine--The probability that Mars will be contaminated o
prior to Calendar Year 2021 as a result of any single launch shall be
not greater than 1 in 10,000. Consideration will be given to the impli-
cations of this requirement for the Centaur stage, the spacecraft, the

capsule, and all emissions and ejecta.

1.4 DESIGN CRITERIA

1l.4.1 Design Approach

The design approach will give precedence to reliability, with perfor-

thance, schedule, maintainability, and cost receiving major attention. o

Reliability will be ensured through conservative design, space-proven

hardware, environmental control, rigorous qualification of all hardware
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not space-proven, modular assemblies, test procedures designed to isolate
failure modes, and redundancy. Based on present state of the art for
Voyager, redundancy will be required to meet the 1971 Mission Success

Criteria.

1l.4.2 Design Considerations

Structural design criteria correspond with those given in MC-4-521-A,

"Mariner C Flight Equipment Structural Design Criteria.”

1.4.2.1 Margin of Safety
The margin of safety shall be considered at both yield and ultimate load

levels. Margin of safety shall be defined as:

Mg = allowable load (or allowable stress) _ 1
design load (or design stress)

1.4.2.2 Hazard Factor
The hazard factors to be used in the design of the Flight Spacecraft, or

any component thereof, are presented in the following table.

ITEM HAZARD FACTOR

Pressure vessels hazardous to personnel

in the event of failure 1.76
All other components, including pressure

vessels, nonhazardous to personnel

in the event of failure 1.0
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1.5 PLANETARY VEHICLE WEIGHT

Weights for the Planetary Vehicle for the 1971 mission are allocated

as follows:

JPL SPECIFICATION WEIGHT

Flight Capsule separated weight 1950

Flight Capsule adapter and sterilization

canister (a maximum of 150 pounds

may remain with spacecraft) 350

Flight Spacecraft minus spacecraft adapter

(includes 250 pounds of science) 5500

Planetary Vehicle separated weight 7800

Spacecraft adapter -and spacecraft

support above field joint 250
Planetary Vehicle weight ' 8050
Spacecraft support below field joint 250

TOTAL 8300

1.6 COMPETING CHARACTERISTICS

When there are conflicting technical requirements, the following order

of priority relative to acceptable risks shall govern:

1)

2)

Meeting the requirement for planetary quarantine.

Proper operation of telemetry and communication equipment in down
link.

Continuous, proper Sun-line attitude orientation of spacecraft.

Continuous, proper temperature control of spacecraft.



11)

12)

13)
14)

15)

Proper
Proper
Proper
Proper
Proper
Proper
useful
Proper
Proper
useful
Proper

Design
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functioning of power equipment on spacecraft.

operation of communications and command equipment (uplink).

roll control of spacecraft.

exectuion of midcourse maneuvers.

spacecraft capsule separation.

execution of the manuever placing the spacecraft
Mars orbit.

operation of spacecraft instrumentation at Mars.
execution of the maneuver placing the capuule on
Mars landing trajectory.

operation of the cruise instrumentation.

value to the 1973 and subsequent missions.

Equipment applicability to the 1973 flight hardware and

hardware.

1-9
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2.0 DESIGN CHARACTERISTICS AND RESTRAINTS

The design characteristics and restraints as set forth by JPL in Document
Number 45, Preliminary Voyager 1971 Mission Specification, May 1, 1965,
and Document Number 46, Voyager 1971 Mission Guidelines, May 1, 1965,
have been followed without exception and are summarized in Section 2 of
this volume. Design values for the Mars magnetically trapped radiation
and the Mars meteoroid environment were selected recognizing the "upper
limit" for the radiation and "worst case" for the meteoroid environments
mentioned in Document Number 45. Justification for the selected design

values is given in the appropriate subsections.

2-1
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®
2.1 DESIGN CHARACTERISTICS
2.1.1 General
This subsection describes the design characteristics of the Flight )

Spacecraft.

The launch vehicle shall satisfy the following requirements imposed by
the Planetary Vehicle:
1) The launch vehicle shall launch the Planetary Vehicle on a trajectory
that results in a Mars encounter;
2) The launch vehicle shall protect the Planetary Vehicle from the aero-
dynamic environment;
3) The launch vehicle shall relay certain telemetry data from the Plane-
tary Vehicle during the boost phase;
4) The launch vehicle shall separate from the Planetary Vehicle after
burnout of the third stage;
5) The launch-vehicle system shall provide active environmental control
required by the Planetary Vehicle and including: [
a) Cooling and heating requirements on the pad during test and prior
to launch;
b) Cleanliness requirements when encapsulated under the nose fairing;
c) Limits on heating of the Planetary Vehicle by the nose fairing
during boost;
d) Humidity control of the atmosphere under the nose fairing;
e) Minimum altitude for nose fairing separationj

f) Venting requirements during ascent.

g) Dynamic environment of the Planetary Vehicle during launch.

2-2
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On-board sequencing and logic, as well as ground-command capability,
shall be provided. The spacecraft will provide such services to the
Flight Capsule as power, timing and sequencing, telemetry, and command
during the transit portion of the missions. It shall have a two-way
communication system which provides telemetry to Earth and command

capability.

2.1.2 Mission Profile

2.1.2.1 Boost Phase

From liftoff until shroud ejection, the Flight-Spacecraft telemetry
signals will be radiated through a parasitic antenna located on the
shroud. After shroud ejection, communications will be maintained via

ascent
the Flight-Spacecraft -tow~gain antenna.

A parking-orbit ascent mode shall be used for the Mars 1971 mission.
An arbitrary limit for a 25-minute parking orbit exists for the 1971

mission; the minimum parking-orbit coast time shall be 2 minutes.

The launch vehicle will inject the Planetary Vehicle on a trans-Mars
trajectory and will provide the signal to initiate separation of the

spacecraft from the Centaur stage.

Miss plus time-of-flight dispersions of the Planetary Vehicle pro-
duced by the Launch vehicle shall be correctable with a maximum mid-
course velocity increment of 15 meters per second applied 2 days after

injection.
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2.1.2.2 1Initial Acquisition

After separation of the Planetary Vehicle from the Centaur stage, the

Centaur stage shall back away by employing retrothrust. Immediately

after separation, solar panels and high- and low-gain antennas will be

deployed, and the acquisition of celestial references will commence. )
The Planetary Vehicle will automatically rotate in pitch and yaw to

acquire a solar-reference fix and then be programmed through roll for

acquisition of Canopus. Power during acquisition will be supplied by

batteries. Solar acquisition will nominally be completed within 90

minutes after injection.

2.1.2.3 Cruise Phase

During the cruise phase, the Planetary Vehicle will remain attitude
stabilized. The separation and deflection of the Flight Capsule from
the Flight Spacecraft shall not result in loss of the Flight Spacecraft
attitude-control references. Continuous operational coverage for both
Planetary Vehicles during the cruise phase will be supplied by the Deep

Space Network.

The Flight Spacecraft, prior to Flight Spacecraft-Flight Capsule
separation (except during maneuvers) shall be capable of accepting
data at the rate of 10 bits per second from the Flight Capusle and
transmitting the data to Earth, compatible with spacecraft engineering

telemetry. The transmitted data will consist of commutated engineering-

data frames alternated with science-data frames. The Flight Spacecraft

shall have the capability of transferring at least five commands to the

Flight Capsule before separation. Those commands may be Flight-
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Spacecraft stored commands or ground commands transmitted through the

Flight Spacecraft.

2.1.2.4 Midcourse Maneuvers

The Planetary Vehicle shall have the capability to perform at least four
midcourse corrections. A sufficient total-midcourse-velocity allocation
shall be provided to correct trajectory dispersions and perform any
required trajectory biasing (to satisfy the planetary quarantine con-
straint) with a probability of 0.99. The required allocation will be
approximately 75 meters per second. The first midcourse maneuver will
occur as early as 2 days after launch. Velocity increments for trajec-
tory corrections will be executed through stored command under the con-

trol of the guidance subsystem.

2.1.2.5 Flight Capsule - Flight Spacecraft Separation

Flight-Capsule separation will be under control of the capsule. The
Flight Capsule shall be mounted forward of the Flight Spacecraft and
shall interface with the Flight Spacecraft at the field joint between
the two vehicles. The flight-separation joint is contained within the
capsule adapter. The flight-separation system is forward of the field

joint and is a part of the capsule system.

2.1.2.6 Encounter.Phase
Two Flight Spacecraft will be inserted into Mars orbit and shall arrive

with a minimum separation of 10 days.
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2.1.2.7 Transfer Trajectory

Type-I-transfer trajectories shall be used for the 1971 mission. A
maximum C5 of 18 km2/sec2 shall be assumed. This is compatible with
providing an adequate mission-weight margin for a separated Planetary-
Vehicle weight of 7800 pounds. The hyperbolic excess velocity at Mars
shall not exceed a maximum of 5 Kilometers per second. In order to
improve orbit redetermination geometrics, the absolute value of the
declination of the departure asymptote (DLA) shall be greater than 5
degrees and that of the inclination (INC) of the heliocentric transfer
plane to the ecliptic plane shall be greater than O.l degree. For the
1971 mission, launch from AFETR shall be provided along azimuths ranging
from 71 to 108 degrees east of north inclusive. A future expansion of
the azimuth sector to include azimuths from 45 to 114 degrees east of
north shall be considered. Limiting launch-azimuth boundaries require
that DLA be less than or equal to 50 degrees. For preliminary launch
azimuth sector planning purposes, the |DLAl shall be taken as less than or

equal to 33 degrees for the 1971 mission.

Trajectory corrections for midcourse maneuver and planetary injection
will be based upon angular measurements, two-way doppler frequency shift,

and range.

2.1.2.8 Approach Characteristics
Orbit insertion and capsule entry, descent, and landing shall occur in

view of the DSIF at Goldstone, California.
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The selection of an aiming point shall include consideration of landing-
point constraints, planetary-quarantine constraints, accuracy require-
ments, orbit-determination uncertainties, and midcourse maneuvers. The
selection of aiming points during an actual flight will follow an adaptive

policy.

2.1.3 Subsystems

2.1.3.1 Telecommunications

The telecommunications system shall provide the capability of:

1) Determining the angular position, the doppler frequency shift, and
the range of the spacecraft for orbit determination;

2) Receiving transmitted commands from Earth for controlling spacecraft
operation;s

3) Telemetering engineering and scientific information from the

spacecraft.

Planetary-Vehicle and MOS Interfaces--The Planetary-Vehicle and MOS

interfaces are in the areas of telecommunications, control data handling,

and operating modes. Specific interface areas include:

1) Telecommunications frequencies;

2) Tracking modes;

3) Telemetry subsystem operating modes, data rates, and data formats;

4) Command-subsystem data rates, command formats, and number of
commands

5) On-board-controller command sequences;

6) Operating modes of spacecraft, capsule, and Science Payloadsi%/
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7) Equipment operating-tolerance specifications for spacecraft, capsule,

and\Science Payloads.

Planetary Vehicle and DSN Interface--The Planetary-Vehicle and DSN Inter-

face includes S-band rf links for acquisition of spacecraft telemetry o

data, sending of spacecraft commands, and spacecraft tracking.

1) The telecommunication equipment shall be compatible with nonmission-
oriented Deep Space Instrumentation Facility equipment;

2) The bit error probability for the telemetry link at threshold shall
be less than 5 x 10’3;

3) An emergency mode shall be incorporated with degraded perfofmance
relative to the specified bit-error rate (PE =1 x 102 instead of
5 x 10'3). This mode provides engineering data via the spacecraft
low-gain antenna for a period of 1 to 3-% months beyond encounter if ®
communications capability using the high-gain antenna is lost. (e.g.

because of degraded attitude control);

4) The bit error probability for the command link at threshold shall be
less than P2 = 1075

5) The command equipment shall be compatible with the command-verifica- [ _
tion equipment;

6) The command equipment shall employ pseudo-noise-synchronization

techniques.

Spacecraft and Capsule RF-Relay Link--The Flight Spacecraft design shall

provide a VHF relay receiver and a fixed low-gain antenna. This equip-
ment shall be capable of receiving post separation data from the capsule

(until impact) at a rate of 10 bits per second. This data will be handled
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and retransmitted to Earth by the spacecraft-communication system.

Relay communications after impact shall also be considered.

Antenna Subsystem--The antenna subsystem shall consist of the following:

1) An 8'by 12' paraboloidal high-gain antenna, capable of
maintaining continuous Earth bearing during later stages of spacecraft

flight.
A Leow =

Covtrege for teleme Ry VNS the erufsc fo/ﬁpon)

during—the-near-Eerth-portion of the flight and command up-link

2)

during all phases plus maneuvers;
3) A VHF fixed low-gain antenna and a VHF receiver will be provided to
receive data from the capsule after separation (up to and including

impact) at a rate of 10 bits per second.

The ground-link antennas will communicate with the DSIF spacecraft-

monitor station at Cape Kennedy for spacecraft capsule DSN compatibility
verification and telemetry reception from liftoff until end-of-view on

the local station horizon.

Receiving Subsystem--During much of the Mars transit time, the Flight
Spacecraft will remain attitude-stabilized and will maintain continuous
transmission. The transmitted information will consist of commutated

engineering-data frames alternated with science-data frames.

The spacecraft engineering-data rate shall be 10 bits per second (unless
otherwise specified) and the capsule-to-spacecraft data rate after landing
shall be 100 bits per second to allow for multiplexing of engineering and

science data as a backup link for the direct capsule-to-Earth link.

-~

-
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Command and Control--The spacecraft-control system shall be designed to

conserve the number and complexity of Earth-based commands. The number

of real-time Earth-based commands shall be minimized. Spacecraft and

capsule shall contain on-board controllers to initiate control commands

that are entered prior to the time of execution. The spacecraft shall

receive, decode, and execute commands received via Earth-based radio

including:

1) Discrete commands to perform functions where execution times cannot
be defined prior to launchj

2) Backup commands for critical and other selected on-board controller
commands;

3) Quantitative commands associated with spacecraft maneuvers;

4) Commands to override or inhibit critical on-board controller commands

or previously received radio commands.

Critical Radio Command Integrity--The Flight Spacecraft design shall pro-

vide for telemetry readback or other equally reliable methods for verify-
ing critical radio commands prior to execution. This requirement involves

the CC&S as well as telecommunications.

At preselected times throughout the trajectory, several discrete events
will occur:

1) The star tracker cone angle will be updated;

2) The bit rate of the transmitted signal will be changed as required;
3) The transmitter output will be switched from the low-gain antenna

to the high-gain antenna;
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4) The high-gain antenna position will be updated as required.
These events will be initiated by on-board logic with ground-command

backups.

Transmitting System--The output from the transmitting subsystem shall

possess the capability for connection to either the high-gain or low-
gain antenna. Switchover will occur on command from the CC&S with
ground-command backup. Transmission via the high-gain antenna will be
required for approximately the last half of the mission. The spacecraft
will transmit continuously during the transit time to Mars. The trans-

mitted data will be a combination of engineering and science data.

Bit Rates--Science instruments shall possess individual output data rates

of 50,000 bits per second for planetary science and 100 bits per second

for cruise science. An individual operation cycle of spectrometric,

radiometric, and photometric instruments will generate from 104 to lO6

bits, and photographic instruments will generate from 10% to 107 bits per

picture.

Storage--cruise-science data will not be stored because (1) real-time
transmission is available during the entire mission (with the possible
exception of maneuver, separation, and orbit-insertion periods), and (2) /><1

/

some buffering is assumed in the DAS to handle solar-flare conditions.

Planetary science data will be stored as required.

ran 9 /‘/vj cafccé///f;.

Ranging--The spacecraft shall be instrumented to provide two=way-deppler-
and—elemetry date—for—ranglingy—
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2.1.3.2 Central Computer and Sequencer

The CC&S functions are:

1)

2)

3)

5)

Generate timing frequencies and pulse trains on the Flight Spacecraft;
Provide a timing capability for specific fixed time intervals and
eventss

Provide a timing capability for specific commanded time intervalsj
Provide control signals based on 1), 2), and 3)3;

Detect commands that are the output of the Flight Spacecraft radio
demodulator;

Decode the digital commands and route discrete and quantitative
commands to spacecraft subsystems;

On-board sequences shall include:

a) Prelaunch;

b) Launchj

c) Automatic spatial reference acquisitions

d) Early maneuver (telemetry on low-gain antenna);

e) Late maneuver (telemetry on high-gain antenna);

f) Cruise, cyclicss

g) Retrothrust maneuver (telemetry on high-gain antenna);

h) Solar occultation;

i) Capsule separation sequence;

j) Preseparation checkout sequence;

k) Orbital operations sequence;

1) Planetary observation sequences.

The CC&S shall be designed to conserve the number and complexity of

Earth-based commands. The number of real-time Earth-based commands shall
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be minimized. The Flight Spacecraft and Flight Capsule shall contain on-
board controllers to initiate control commands that are entered prior to

the time of execution.

2.1.3.3 Guidance and Control Subsystems

The guidance and control subsystems consist of:

1) Attitude-reference subsystem;

2) Autopilot sybsystem;

3) Reaction-control subsystem.

The propulsion subsystem (thrust vector control) and the central computer

and sequencer also contribute to the guidance and control subsystem.

Functional Design Restraints--The major subsection of guidance and control

are attitude control and velocity control. :Drg’ﬁ’\’ C/'leaCt_ﬁ"iST' cs
OLI\/d /‘65‘,‘/‘6({‘,\;*5 POf Téfsc SUbSCCT/'GNS 8;J<N ,-/U

Table Q-1
Table Q—{(A’ﬁaded)
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Guidance and Control Equipment--Trade offs between timer-oriented and

memory-oriented special-purpose computers shall be performed.
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Memory and Logic Elements--Only semiconductor and ferrite-core logic and

memory elements will be considered.

Control Devices--A passive control stabilization such as derived rate will

be used in the interplanetary cruise phase.

Gyros will be used in a rate mode for rate reduction and control-system

compensation in the acquisition mode. Passive compensation may be used

as a backup.

1) Single-axis floated integrating ball-bearing gyros or gas-bearing gyros
shall be considered. Pulse-torque rebalance loops will be considered.
Spin-motor power requirements will not be less than 1.5 watts.

Torquer scale factor will not exceed 400 degrees per hour per milli-

ampere.

2) Two-axis gyros with torquer-to-rebalance capability will be considered.

Star Sensors--Star sensors will not consist of moving parts that are sub-
ject to wear or cold-vacuum welding. Sensors will use a photovoltaic,

photoconductive, or photoemissive detector.

Actuators--Flex leads will be used in preference to slip rings; geared ac-
tuators will be able to withstand stalled conditions at the output shaft

without internal damage; and mechanisms will be sealed and pressurized

with inert gas.



BOEING

D2-82709-1

Cold-Gas Reaction Jets--For maneuvers that have very low thrust levels

and which involve complex duty cycles and where the system mass is a very

low fraction of the total spacecraft mass, cold-gas systems are preferred.

2.1.3.4 Propulsion--Midcourse
The Planetary Vehicle's trajectory will be altered by the midcourse-pro-
pulsion subsystem. This subsystem will provide the necessary impulse to

maneuver the spacecraft into the desired trajectory.

Midcourse-Propulsion Requirements--The Planetary Vehicle will have the

capability to perform at least three midcourse corrections plus one backup
maneuver. A sufficient midcourse velocity allocation will be provided to
obtain a nominal trajectory for the spacecraft within a tolerance of +500
kilometers. Within 2 to 10 days following injection, the first trajec-
tory-correction maneuver will be performed. One or more subsequent man-
euvers may be required to improve the aiming-point accuracy or flight-

time accuracy.

The first midcourse correction will require 15 meters per second, assum-
ing 1- o0 1imit to correct for random errors arising from Centaur injection-
guidance dispersions. The recommended midcourse fuel will be sufficient

for a minimum of 75 meters per second.

The propulsion subsystem in a fueled and pressurized condition will be
capable of withstanding an ambient temperature range of 40 to 135°F from

preflight through termination of the orbit-change maneuver.
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The propulsion subsystems must be capable of storage in a space environ-
ment through the time of orbit change maneuver without causing a deleter-

ious effect upon its own performance.

Leakage from the midcourse propulsion subsystem in a vacuum environment
will be minimized by isolating pressurized portions of the propulsion
subsystem. The propulsion subsystem will be designed to be safe and
operable for any single condition of potential malfunction within a sub-
system circuit. The ignition and thrust termination signals will be

provided by the central computer and sequencer.

Orbit-Insertion Propulsion--The orbit-insertion propulsion subsystem will

provide a velocity increment ( AV) of 5700 + 20 feet per second for a
5500-pound spacecraft. The solid motor shall be positioned so that its
exhaust plume will not impose intolerable thermal loads on the spacecraft

appendages.

2.1.3.5 Thermal Control

The spacecraft and the thermal control Subsystem will be designed to
maintain all component parts within specified temperature limits through-
out the entire spacecraft history, including ground checkout, launch, and

all phases of the flight sequence.
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Louver assemblies will be designed to control the heat rejected to space

from electronics bays, science platform, and spacecraft propulsion simi-

lar to the Orbiting Astronomical Observatory per NASA. In the nominal

setting, the louvers are fully closed at 50°F and fully open at 80°F.

Thermal shields and insulation will be used to isolate spacecraft element
groups from space and from one another. Solar shields will be used to re-
duce the effect of changing solar flux during the transit phase on the
Spacecraft Bus and certain external components (i.e., magnetometer). The
capsule, spacecraft internal equipment, and spacecraft propulsion will be
separated by adiabatic interfaces. Heat shields will isolate the engines

to prevent an influx of heat resulting from engine firing.

Surface finishes affecting heat exchange between elements and space will
not be dependent on coatings and finishes that may have uncertain proper-
ties as a result of electromagnetic or corpuscular particle damage. High
reflectance, low emittance surfaces will be used to achieve maximum ex-

change factors.

Controlled electric heat will be used where necessary to ensure adequate
temperature control margins and to obtain fine temperature control es-
pecially in the case of scientific sensors during operations. Heaters will
be controlled automatically by thermostatic bimetal thermal switches.
Consideration is being given to heater circuits which may be actuated

by a preprogrammed sequence implemented in CC&S by ground command. Use

of this concept will depend on analysis and test of the final spacecraft

configuration.
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The Spacecraft System and its component parts will be tested in a space
chamber to provide the maximum assurance, before launch, that the design

objectives are satisfied.

.Consistent with special equipment requirements, the electronic assemblies
will be suitably mounted to provide conductive heat paths to the space-
craft. Any subassembly within an assembly will be capable of serving

as a heat path or sink for heat loads generated within other subassemblies.
Adjacent subassemblies will use radiative and conductive heat exchange to
the maximum extent. The assembly chassis will provide a surface suitable
for application of required temperature control finishes. Surface flatness
and‘the number of fasteners used will be compatible with thermal control

requirements.

2.1.3.6 Structures and Mechanisms

The equipment required to perform the Voyager flight functions will be
assembled into a unified structure that will facilitate operation as a
complete system. The structure will provide load and thermal paths,
suitably rigid support points for interface items, and protection against

environmental factors.

Ground handling and transportation loads will not control the design
of the spacecraft structure, except for local handling fittings. Limit
loads for the spacecraft structure shall be maximum anticipated flight

loads.
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Flight loads shall be determined by analysis of the complete vehicle.
The following conditions and events shall be considered:

1) Internal pressure

2) Liftoff

3) External pressure reduction with altitude

4) Maximum dynamic pressure

5) Thrust termination (all stages)

6) Mars transit

7) Capsule separation

8) Mars-orbit injection-engine ignition

9) Mars-orbit injection=engine cutoff

Spacecraft separation-joint preloads will be considered separately and
in combination with launch loads. Pressure-vessel loads due to internal
pressure and launch shall be considered separately and in combination.
Axial and lateral launch loads shall be combined as indicated by the
design trajectory. The effects of any coexistent thermal environment
shall be included in the load analysis where appropriate. Dynamic

buckling shall be considered for members subjected to oscillatory loads.
The spacecraft shall be positively secured to the upper part of the
launch vehicle adapter by a simple mechanical system that provides adequate

structural continuity during the boost phase.

The center-of-gravity limitation of the Planetary Vehicle in the boost-

mode configuration is a semi-infinite cylinder 3 inches in radius, with
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the centerline on the vehicle roll axis, and with the upper end of the

cylinder at vehicle station 2170.00.

The spacecraft adapter will have an inflight mechanical disconnect system,

a pull-apart electrical connector, and a prelaunch separated electrical

connector, as well as electrical cabling from the two connectors above

to a connector at the field joint.

The structures and mechanisms subsystem shall be designed to:

1)
2)
3)
4)
5)

6)

7)
8)
9)

10)

11)

12)

Support spacecraft assemblies;

Support spacecraft components;

Maintain adequate alignment between components;

Provide acceptable static and dynamic load environments;

Support flight capsule;

Separate the spacecraft from ground-launch facilities (umbilical,
etc.);

Separate the spacecraft from the launch vehicle;

Point articulated antennas;

Point instruments;

Extend and/or erect stowed members, e.g., solar panels, protective
covers, instrument supports, etc.;

Jettison used spacecraft parts;

Release capsule from spacecraft.

Structural and Mechanical Design Criteria--Details are outlined below.
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Design considerations--Structural design considerations are given in

functional specification MC-4-521 A, "Functional Specification," Mariner

C Flight Equipment.

Structural Design Criteria--A prime design consideration is the coupling

of structural modes during launch, midcourse, and orbit-insertion sequen-

ces. During launch it is necessary to consider the dynamic structural

interaction of the launch vehicle and the Planetary Vehicle.

Design Loads--The design loads for a spacecraft structure development

program will be based on a rational consideration of the loads applied

to the composite spacecraft-launch vehicle structural system. Those

loads will be upgraded by an iterative approach applied throughout the

development period. The design loads of Table 2-2 are given to provide

a uniform basis for preliminary structural design.

TABLE 2-2: Design Loads

Static Vibration
Condition Longitu- Lateral Longitu-  Lateral Torsion
dinal dinal
O-peak O-peak O-peak
g g g g rad/sec?
(1) 6 1 0.8 0.5 0
(2) 2 1 1.2 0.75 60
(3) 1 0 1.6 1.0 60
(4) 0 0 1.6 0 0
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The combined longitudinal and lateral static loads shall be combined
with vibration in one or more critical directions. All lateral loads

shall be considered in the most critical lateral direction.

All vibration inputs shall be considered as discrete transients which
may occur at frequency for the duration shown in Table 2-3. Additional
criteria appear in Section 2.1 of Boeing Document D2-82729-1, "Structural

Load, Analysis, and Test Data for Voyager Phase IA Study."

Table 2-3: LENGTH OF VIBRATION TRANSIENT

Vibration Frequency Range (cps)
Pirection 2.5-10 10-40 40-160
Axial 40 cycles 30 cycles 0.5 sec
Lateral 40 cycles 30 cycles 0.5 sec
Torsion 20 cycles 20 cycles 0.25 sec

Environmental requirements pertaining to shock and random vibration

shall also be considered when applicable.
........... pplicable.

Structural Analysis and Test Requirements--The analytical model of the

spacecraft structure shall be sufficiently comprehensive to approximately
determine frequencies, mode shapes, deflections, and critical stresses.
Separation dynamics shall also be considered. Structural test procedures
necessary to supplement the analytical work to qualify the spacecraft

structure shall be performed.
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Mechanisms--The use of explosive devices shall be minimized. The alter-

native of mechanical or electromechanical devices is preferred.

Solar Fanels--Rigid, flat, or hinged solar-panel structures may be

considered. Wrap-around, flexible, roll-up, or structures with extension
booms will not be considered. Panels shall not be designed to refold

or retract in flight.

Pressure Vessels--Vessels which will be gas pressurized in the vicinity

of personnel shall be fabricated of Ti-6Al1-4V titanium alloy in the
annealed condition. For small low-pressure vessels, 6061-T6 aluminum is
acceptable. A hazard factor of 1.76 (2.2 ultimate) shall be used.
Vessels which will not be pressurized in the vicinity of personnel may
be fabricated of Ti-6Al1-4V titanium heat-treated to 165,000 psi maximum

yeild strength.

Weights--The flight spacecraft less the Flight Spacecraft adapter shall
not exceed 5500 pounds, including 250 pounds of Flight Spacecraft Science
per JPL Payload. Weight margins shall be carried in all weights during
system design, and they shall be identified in all weight statements.
Margins shall be consistent with weight estimation confidence levels.
Weights shall be reported separately by functions, by subsystems, and by

the equipment list.

Sufficient flexibility shall be available within the structures and
mechanism subsystem design to accommodate requirements of specific

payloads as ultimately selected for each Voyager mission.
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Mountings--Special mounting provisions and hardware are required for items

such as the magnetometer boom and antennas.

The Science Payload instrument per JPL interface requirements with the
structures and mechanism subsystem will include mechanical attachment,
electrical attachment, adequate fields of view, and adequate isolation

(radiation, vibration, magnetic fields, etc.) from the Spacecraft Bus,

Isolation will include various covers which must be removed as part

of the flight sequence. These covers will be on the Spacecraft-Bus side
of the interface. In addition, the planet-oriented instruments will
require support from the Spacecraft Bus consisting of planet-sensing and
pointing-control functions. Additional scan modes will be accomplished
within the Spacecraft Science Payload itself. The data automation
equipment and some of the instrument electronics will be made up of
standardized electronic modules and will be housed in one of the Space-

craft Bus equipment packages.

In accordance with JPL specifications, three surface observation instruments
will be mounted on a common scan platform; individual mounting on separate
platforms may be necessary for two atmospheric observation instruments.
There will be six planetary-interplanetary environment observation
instruments. All but one of these instruments will be affixed to the

body of the Spacecraft Busj; the one e¢xception will be mounted to achieve
magnetic isolation from the body of the Spacecraft Bus to the maximum
extent permitted by the spacecraft design. Antennas will be required

for some experiments.
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2.1.3.7 Electrical Power

Flight Spacecraft power during the launch phase and the solar acquisition
phase will be provided by batteries. Subsequent to solar acquisition,
power will be provided by solar panels. Power interfaces will be
established between the Data Automation Equipment and the

Spacecraft Bus. The Flight Spacecraft will be required to provide
instantaneous peak power not to exceed 200 watts to the Flight Capsule
during interplanetary cruise. Specified engineering measurements will be
made during flight for the purpose of evaluating the operation of the

power subsystem and to verify that certain functions are being performed.

Power Subsystem Requirements--The power subsystem shall be designed to:

1) Provide electrical power from the primary power source for spacecraft
operation;

2) Provide electrical power from a charged battery when the primary
source will not handle the loadj

3) Provide power from the primary source to recharge the battery;

4) Condition power for spacecraft use; parameters to be regulated are
voltage, frequency, wave-form, phase, and noise level;

5) Distribute power as required;

6) Condition power to individual requirements.

Primary Power--Primary power shall be provided by solar panels.
In the solar panel design, values greater than those presented below

shall not be used.
1) Photovoltiac solar cells shall be of the silicon single-crystal

variety, with dimensions no greater than 3 x 3 cm.

2-26




An

be

2)

BOEING
D2-82709-1

Cell-packing factors greater than 90% shall not be considered.
Specific power capability of solar arrays shall not exceed 11 w/ft2
at a panel temperature of 57°C, oriented normal to a space Sun inten-
sity of 140 mw/cmz.

Solar cells thinner than 8 mils shall not be considered.

Solar panel structures shall be designed for an C*/E no greater than

0.5 radiating from both sides to free space.

upper limit to performance characteristics of primary batteries shall
as follows:
Sealed Zinc Silver-Oxide |

95 percent capacity retention for 1 year at 70°F.

100 watt-hours per pound maximum. %;{.

Maximum battery shelf life of 2 years.

Minimum volume of 0.5 cubic inch per watt-hour.
Remotely Activated Zinc Silver-Oxide

100 percent capacity retention for 1 year at 70°F.

50 watt-hours per pound maximum.

Maximum battery shelf life of 5 years.

Minimum volume of 0.5 cubic inch per watt-hour.

Secondary Power--An upper limit to performance characteristics of second-

ary batteries shall be as follows:

1)

Sealed Zinc Silver-Oxide
95 per cent capacity retention for 1 year at 70°F.
50 watt-hours per pound maximum.

Maximum battery shelf life of 2 years.

2-27



BOEEING

D2-82709-1

Minimum volume of 0.5 cubic inch per watt-hour.
Maximum cycle life of 500 cycles at 30 per cent depth of discharge.
Maximum depth of discharge of 95 per cent.
Maximum amp-hr recharge efficiency of 98 per cent.
2) Sealed Silver-Cadimum ®
95 per cent capacity retention for 1 year at 70°F.
30 watt-hours per pound maximum.
Maximum battery shelf of 2 years.
Minimum volume of 0.59 cubic inch per-watt-hour,
Maximum cycle life of 2000 cycles at 30 per cent depth of
discharge.
Maximum depth of discharge of 95 per cent.

Maximum amp-hr recharge efficiency of 98 per cent.

Regulators and Inverters--An upper limit to performance characteristics

of electrical regulators shall be as follows:

1) Booster Regulators
Power handling capability of 400 watts per unit, maximum.
Voltage stability of +1 per cent.
Efficiency at 400-watt power level: 86 percent at 40 volts or
88 per cent at 25 volts.

2) Pulse-Width Modulated Series Switching Regulators
Power handling capability of 400 watts per unit, maximum.
Voltage stability of #1 per cent.
Efficiency at 400 watt power level: 90 percent at 50 volts

94 per cent at 35 volts.
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3) Shunt Regulators
Power handling capability of 100 watts per unit maximum,
Voltage stability of ¥1 per cent for the extreme panel
temperature variation,

4) Regulating Inverters
Power handling capability of 400 watts per unit maximum.
Voltage stability of 1 per cent, square wave.

Efficiency of 85 per cent maximum.

An upper limit to performance characteristics of inverters shall be as
follows:

1) Free running frequency accuracy of ¥1 percent.

2) Frequency accuracy when stabilized of ¥0.01 per cent.

3) Efficiency of 40-v input and a load power of 300 w: 90 per cent

maximum.

Synchronization shall be accomplished by means of either phase lock or
frequency lock. The synchronization method shall be sensitive enough to
provide operation with 50 per cent distorted synchronization signal main-

taining required outputs.

2.1.3.8 Pyrotechnics
Should mechanism design warrant the use of explosive devices; the pyro-

netic equipment shall conform with the following:

General--General Range Safety Plan--Electroexplosive devices (EED),
associated system wiring, and firing circuity shall conform to AFETR 80-2,

"General Range Safety Plan," Volume I, and associated Appendix A.
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Standardization--Consideration shall be given to a standard squib envelope

and matchhead configuration for all EED operations.

Electroexplosive Devices--The following shall apply:

1)

2)

3)

4)

5)

All squibs shall contain redundant (two) bridge wires.

EED's shall utilize connector-type squibs, not pigtails.

Squib bodies shall be made of one-piece construction (the connector
receptacle must be an integral part of the squib body), and shall not
be vented.

All EED's shall utilize l-amp/l-watt no-fire squibs (1l-amp/l-watt
applied to each of the two bridge circuits simultaneously).

Squibs shall be designed to provide continuous circumferential shield-
ing between cable and device to ensure that the shield circuit is
completed before contact is made with the bridge pins.

Exploding bridge wire devices shall not be used.

Devices will be nondetonating. Materials such as RDX shall be avoided.
All squibs shall be able to withstand static discharges of 25 kilovolt
from a 500-picofared capacitor applied between pins, or between pins

and case, at all pressures.

Initiation Circuitry--The following shall apply:

1)

2)

Redundant firing circuitry shall be used.

Solid-state devices shall be used for switching. No electromechanical
relays shall be used.

The number of electrical componts shall be minimized, consistent with

maximizing complete system reliability.
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4) Spacecraft A.C. power shall be used for squib initiation. Direct
current power system transients resulting from initiation will not
produce significent effects on other equipment.

5) The design shall consider as probable the instantaneous and permanent

electrical shorting of each and every squib upon firing.

2.1.3.9 Spacecraft Science Subsystem

The Spacecraft science instruments objectives will include planetary
observations and planetary-interplanetary environmental observations. \7%W
The Spacecraft science hardware will consist of five planetary observation
instruments: two for planetary atmospheric observations and three for
surface observations. In addition, there will be six planetary-inter-

planetary environment observation instruments.

The scientific instruments with fixed view angles shall be located on the
Spacecraft Bus. Scientific instruments that require pointing will be on
a scan platform. Sensors requiring isolation from the spacecraft will be

mounted on a deployable boom.
TV and Mars scanner experiments should be capable of repeating measure-
ments on certain areas for possible detection of seasonal changes after

periods of 1 to 3 months.

Instruments shall be capable of operating in the environment imposed by

the spacecraft attitude-control system in the normal stabilized mode.
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Instruments shall be capable of operating over the temperature range

attainable by spacecraft temperature control.

All scientific instruments shall be designed to be as functionally in-

dependent of one another as is practical. Failure isolation shall be o

provided in all science instruments.

Data from the Science Payload will be presented to the spacecraft in a

format compatible with the spacecraft data handling equipment.

The Data Automztion Equipment will be designed for inclusion in the

electronic packages of the Spacecraft Bus.

Calibration sequences are initiated by means of periodic commands from ®
the Spacecraft Bus CC&S or through real-time commands from ground-based

transmitters.
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2.2 DESIGN RESTRAINIS

This section defines the restraints imposed on each subsystem by the

system and by the other subsystems. It also includes environmental data.

2.2.1 General

All design concepts, materials, and components considered for the
Voyager 1971 mission sﬁall have a development freeze date of July 1966.
Only those design concepts that have demonstrated feasibility and will
have been developed by that date shall be considered for inclusion in

the Voyager 1971 mission.

2.2.2 Radiation Sources

The flux produced by artificial or natural radioactive material on
board the spacecraft must not produce an increase in the counting rate
of the interplanetary radiation instruments in excess of 1.0 percent of

the interplanetary background rate.

2.2.3 Magnetic Interference

The total magnetic field from d.c. through 5.0 cps of an assembly or
subassembly shall not exceed 5 gammas measured at 3 feet. Magnetic
fields above a frequency of 5.0 cps are of minor significance. The
current loop contribution to the spacecraft magnetic field shall at
no time exceed 0.5 gamma, measured at 6 feet from the spacecraft

centerline.

2-33



BOEING

D2-82709-1

The total magnetic field of an assembly or subassembly shall not change
by more than 0.5 gamma, measured at 3 feet, under the following con-
ditions:

1) As a result of Type Approval vibration testing;

2) When change between Mode 2 and Mode 3 operation occur (power off to

power on)
3) During operation in Modes 2 or 3.

Magnetic Fields--Use of all materials, processes, and parts shall be

controlled in such a manner that the summation of all magnetic fields
shall not exceed 1.0 gamma, measured at the magnetometer in its deployed

location, under simulated functional environment.

To the extent possible, according to priority with competing charac-
teristics, materials shall be those selected by Boeing and approved by
JPL which, when subjected to suitable test, exhibit permeability no

greater than 1.004.

A number of materials exhibit subtle variations in magnetic behavior

that must be considered in the design, fabrication, and usage of

Voyager hardware. For example:

1) Stainless steels such as 304 may be paramagnetic when they are in
the fully annealed condition, but become ferromagnetic if work
hardened. The degree of ferromagnetism is a function of the amount
of cold work, and the total resulting magnetic field is a function
of the volume of metal which is cold worked.

2) Nickel-base sﬁperallOYS may be paramagnetic in some heat-treat

conditions and ferromagnetic in others. The heat-treat condition
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for most desirable magnetic properties may not satisfy the require-
ments for strength, hardness, fabrication, or other considerations.
Available data indicate that there is variation in magnetic
properties between different samples in lots of the same material

in purportedly the same condition.

The requirement for maximum magnetic cleanliness can be met providing
that magnetically clean materials can be prevented from becoming mag-
netically contaminated in processing and in various other stages of

use. This will require close attention to all phases of processing.

The environment during manufacture, mixing, and blending of raw
materials must be controlled to prevent inclusion of ferromagnetic
materials. Similar care must be exercised during fabrication of hard-
ware to prevent inclusion, occlusion, or imbedment of ferromagnetic
material. For example, ferromagnetic chips or filings could seriously
affect otherwise magnetically clean aluminum parts. The summation of

magnetic permanence is considered to be the value to be minimized.

Deperming and Mapping--Associated with both deperming and mapping

Operations, fields larger than the Earth's field will be encountered.
Normal perming and deperming procedures will involve 60-cycle AC
magnetic fields as high as 100 gauss (oersteds). 1In designing space-
craft circuitry, the requirements for subsequent deperming shall be given

consideration and the enclosed area of circuit loops held to a minimum.
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Umbilical and Direct Access Functions--Adequate isolation shall be

provided on all umbilical and direct access functions as a safeguard

against external faults.

2.2.4 Environment

The environmental constraints include the scope of manufacturing and
shipping, test and launch, cruise, orbit, and Mars surface areas.

An entry of NA in the following environmental tables indicates a non-
applicable estimate; an entry of an X indicates an estimate of an
environment is included in the text; a blank represents an environment

for which there is no estimate currently available.

2.2.4.1 Manufacture and Shipment Environment

Table 2.2-1 shows the environmental considerations in manufacture and .

shipment.

Table 2.2-1: ENVIRONMENTAL CONSIDERATIONS IN MANUFACTURE AND SHIPMENT

- S L oE
~ 5 - (@ LS
B it o B g8 29 2 ©
q(g . .gg - o O o Kt o E o
3 (&} O G P .g %’O %w &g 8
: 5§ 25% § 4% ZF 4% ¢
= m 2SS & HxE 658 HH &
Temperature X X X X
Humidity X X X
Vibration NA NA NA NA NA
Shock NA NA NA NA NA
Pressure NA
Contaminants NA NA NA
Solvents & NA NA NA NA NA
Chemicals
Magnetics X X X X X X X X
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Temperature--Temperature of components or assemblies after manufacture
is completed will not exceed flight acceptance testing limits. Temp-
erature of the spacecraft during shipment and storage will be main-

tained between 35° and 100°F.

Silver-cadmium batteries will be stored between 20° and 50°F at the

ETR prior to installation in the spacecraft.

Humidity--The spacecraft environment relative humidity will not exceed

50 percent during shipment and storage.
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2.2.4.2 Test and Prelaunch Environment

Table 2.2-2 establishes the environmental conditions during test and pre-

launch.
Table 2.2-2: ENVIRONMENTAL CONSIDERATIONS IN ®
TEST AND PRELAUNCH OPERATIONS
Subsystem Labs SAF ESA On-Pad
Humidity X
Temperature
Vibration NA NA NA ®
Shock NA
Electrical Transients NA X X X
Corrosive Atmosphere NA NA
Contamination .
ETO NA X X X
EMI X X X X
Deperming and Mapping NA X X NA
Explosive Atmosphere NA NA NA
¢
Temperature of the spacecraft will be maintained between 35°F and 100°F
prior to installing the batteries. After installation, the spacecraft
will be maintained between 35 and 75°F. Temperature of the propellants ¢
will be controlled to 65°F + 2°F during loading in the spacecraft; this
tolerance is required for close control of ullage volume and suppression
pressure.
e
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Humidity--The spacecraft environment relative humidity will not exceed

50 percent.

Electrical Transients--Electrical transients can be expected as an

environment on power, signal, and control cables.

ETO; SAF Through On-Pad-~For microbiological decontamination, an

environment of ethylene oxide-Freon 12 that conforms to JPL specifica-

tion GMO-50198-ETS will be used.

Electromagnetic Radiation Environment--The rf power density levels for

spacecraft test areas may be high enough to provide interference to a
spacecraft or its checkout. Although rf environment will vary depend-
ing upon the facility used, spacecraft design is planned to tolerate

adverse rf interference to a maximum practicable extent.
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2.2.4.3 Launch Environment

Table 2.2-3 establishes the environmental considerations during launch.

Table 2.2-3: ENVIRONMENTAL CONSIDERATIONS--LAUNCH

|

c
° ge]
2o # o o M
.E @ © p.g c o '2 8 L C
2285 2 2% 2 05 5 S0 %3
c o c L - M o H g P
gf— 90 O owm T © + 3 [ >3 O ©
w W o 3 H m @ o + o @ L~
™ = c c m D@ S H L O X P O @
o "R F BT B TE g & 55 29
§3 a8 & £ 6 o5 S N <3¢5 &3
Shock NA NA X X X NA X X
Vibration, low X X X X NA X X NA X NA
frequency
Vibration, X X X X NA X X NA X NA
ranlom
Acoustic X X X X NA NA NA NA NA NA
Static accel- X X X X NA NA NA
eration
Temperature & Ther- X X X X X X X X X X
mal transients
Pressure reduction NA X X X X NA NA NA NA NA
Electromagnetic X X X X X X X X X X
Interference
Electrical X X X X X X X X X X
transients
Electrically con- NA NA X X NA NA NA NA NA NA
ductlve gas
Electrostatic charge NA X X X X NA NA NA NA NA
& dischkarge
Contamination, X X X X X NA NA NA NA NA
particulate
Solar radiation NA NA NA NA X X X X X X
Albedo NA NA NA NA
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2.2.4.4 Postlaunch

Table 22-4 establishes the environmental considerations during postlaunch,

Table 2.2-4: ENVIRONMENTAL CONSIDERATIONS --POSTLAUNCH

c
o c
o (o]
.
(8] + [
[V I )] [ Q [v] O
O o~ (e} — N & o
~ O ot U o O O )] +
3 > + Q — O — ©
o 3 + O~ -+ (=] ol ) o 30 &
(ST o @ - & Hoed O O\ ©
TEC Q0w Qo o oCc o Qv o
— @ q c HH 3 P00 © o
== O+ Ok @M OO O v
Vibration
Shock
Thermal Transients
Charge Buildup X X X X NA NA
(from combustion)
Exhaust Gases X X X X NA NA
Microbial
Contamination NA NA NA X X X

Charge Buildup from Combustion--Potential voltages may build up on the

spacecraft from the burning of the trajectory correction motor. Because
there does not appear to be a discharge possibility in flight, this accu-
mulation of charge may be quite large and may be hazardous during the cruise

phase. Further study of this pnenomenon is currently under way.

Exhaust Gases--There may exist the possibility of gases enveloping the

spacecraft during the propulsion motor burn. The actual conductivity

value will have to be determined at a later date.
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2.2.4.5%5 Environmental Characteristics

-
Pressure Reduction During Ascent*--The assumed nominal environment is given

in Table 2.2-5

Table 2.2-5: AMBIENT PRESSURE VERSUS TIME .
Time of Flight Ambient Pressurs
(sec) (psia)
0 14.5
10 14.0 ‘
20 13.2
30 11.8
40 9.5
50 6.6
60 4.3 ®
70 2.5
80 1.4
90 0.7
100 0.4
®

The spacecraft shall be capable of withstanding the effects of boost

depressurization associated with the pressure schedule in the above table.

* Ref.: "Mariner Mars 1964 OTN Metal Shroud Systems Analysis," Report

1 MSC-A 652810, November 23, 1964.
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Low-Frequency Vibration--Estimated flight vibration shall be the

following sine wave:
Lateral 0.6-g rms 5 to 200 cps

Axial 1l.2-g rms 5 to 200 cps

Random Vibration*--Liftoff and Transonic--The vibration environment,

with the exception of low frequency, shall be assumed to be the

following omnidirectional input to the spacecraft separation plane:

1) PSD peaks of 0.07 g2/cps ranging from 100 to 1500 cps with a 6
db/octave rolloff in the envelope defining peaks below and above
these frequencies.

2) Maximum total time is 60 seconds.

Acoustic Sound Field*--Liftoff and Transonic--The maximum acoustic

field, for either liftoff or transonic, shall be assumed to be a
reverberant field as follows:

1) Overall SPL is approximately 142 db (re 2.10-5N/m°);

2)  SPL of 133.5 db/third octave from 85 to 250 cps;

3) Rolloff at 11 db/octave below 85 cps;

4)  Rolloff at 5 db/octave above 250 cps;

5) Total duration is about 2 minutes.

Static Acceleration*--The following shall apply:

1) Liftoff Through Saturn IB Staging--The longitudinal acceleration
build-up to a maximum value of approximately 4 g's at first-stage
*Ref.: "Mariner Mars 1964 OTN Metal Shroud Systems Analysis,"

Report 1 MSC-A 652810, November 23, 1964.

2-43



BOESING

D2-82709-1

shutdown. The lateral acceleration during this same period of
time shall have a maximum value of 2<g's.

2) Saturn IVB Operation--The longitudinal acceleration will build up
to a maximum value of approximately 2.6 g's at the end of S-IV
operation. The lateral acceleration during this same period of
time will have a maximum value of < 2 g's.

3) Centaur First Burn--The longitudinal acceleration will build up to
a maximum value of approximately 1.0 at the end of Centaur first
burn. The lateral acceleration during this same period of time
will have a maximum value of < 2 g's.

4) Centaur Second Burn--The longitudinal acceleration will build up
to a maximum value of approximately 2.2 g's at the end of Centaur
second burn. The lateral acceleration during this same period of

time will have a maximum value of < 2 g's.

Temperature and Thermal Transients*--From engine ignition through

shroud separation, the maximum heat rate from the shroud to spacecraft

shall be assumed to be 40 watts per square foot.

For S-IVB operation through spacecraft separation, the maximum aero-

dynamic heat rate shall be assumed to be 24.2 watts per square foot.

2.2.4.6 Planetary Upper Atmospheres and Interplanetary Space
Near-Earth--The Earth atmosphere described by the U. S. Standard Atmos-
phere, 1962, shall be used as reference. At high altitudes, variations
*Reference: "Mariner Mars 1964 OTN Metal Shroud Systems Analysis,"

Report 1 MSC-A 652810, November 23, 1964.
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in the observed density from the model atmosphere, which are as large
as a factor of 5, may occur because of variation of solar activity and
because of diurnal and seasonal variations. Similar variation in the

pressure may result.

Cruise--The number density of interplanetary matter is approximately

100 particles per cubic centimeter. This matter is composed primarily
of hydrogen, hydrogen ions, helium, and helium ions. The density varies
with solar activity and, in addition, probably decreases somewhat with

increasing distance from the Sun.

Flyby--The Martian upper atmosphere, especially the exosphere, is not

well defined at this time. Until more definitive scientific measurements
and interpretations can be made, the following atmosphere maximum density
estimate is provided. Circular and elliptical orbit are the same as

fly-by.

Up to 1500 kilometers from the Martian surface, the atmospheric para-
meters are assumed to have values given by Model 1 of NASA engineering
models of Mars atmosphere for entry vehicle design. The atmospheric

density above this level is shown in Table 2-9.

2.2.4.7 Radiation--Solar Thermal Radiation

Near-Earth--The solar spectrum, outside the Earth's atmosphere, shall

be assumed to have the shape of the Johnson curve (Johnson, F. S.,

"The Solar Constant," Journal of Meteorology, Vol. II, No. 6, pp 431-439.)
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o
Table 2.2-6; ATMOSPHERIC DENSITY
Altitude Densitg
(km) (gm/cm>)
-4 o
1,500 2.7 x 10
2,000 1.5 x 10"14
3,000 6.9 x 10-13
4,000 4.0 x 10713
5,000 2.5 x 10713 ®
6,000 1.7 x 10713
8,000 1.0 x 10713
10,000 7.2 x 10710
®
@
[
¢
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and an integrated intensity of 127 watts per square foot at a distance

of one astronomical unit.

Cruise--During cruise, solar radiation will continuously vary from that

of near-Earth to that near-Mars.

Near-Mars at Encounter--At Mars, the solar spectrum shall be assumed to

have the shape of the Johnson curve, and will vary in intensity from
57.2 to 67.0 watts per square foot, depending upon the Sun-Mars dis-

tance, which varies somewhat during the 1971 encounter period.

Mars Orbiter--During the 6 month following encounter, the Sun-Mars is-

tance changes. Therefore, the solar spectrum is as given for near-Mars
with an extreme spread of integrated intensities from 67.0 watts/sq.fte
at encounter to 46.7 watts/sq.ft. 6 months later for 1971.

2.2.4.7.1 Corpuscular Radiation

Geomagnetically Trapped Particle Radiation--This radiation consists of

the followings

1) Near-Earth--Omnidirectional flux along the geomagnetic equator:

Peak proton flux (E> 20 Mev) = 1.5 x 104 -5 x 10%

Inner-belt (1.3< L 1.7) protons/cm2/sec
Time-integrated proton flux = 1 x 107 protons/cm®  (E> 30 Mev)
Peak electron flux (E >2.5 Mev)

Inner-belt (l.5¢ L < 1.4)=4 x 108 electronics/om2/sec

6

Outer-belt (4 < L< 4.5)= 2.5 x 10~ -1 x 107 electrons/om2/sec
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Time-integrated electron flux 4 x 100 electronics/cm?/sec

(E >0.5 Mev)

Spectral distribution - Spectral distributions of omnidirectional
flux along the magnetic equator are given in Figures 2-1 through 2-3.
Angular distribution - Isotropic
a) Protons (inner belt)--variable within a factor of 2 to 10
b) Electrons (inner belt)--variable within a factor of 2 to 10
c) Electrons (outer belt)--variable within a factor of 10 to 100

2) Flyby--The design environment for magnetically trapped particle
radiation around Mars will be assumed to be equivalent to the ®
near-Earth environment. Estimated peak flux positions (measured
from center of Mars) in the Martian radiation belts are 5000 kilometers
for the inner belt and 16,000 kilometers for the outer belt.

3) Circular orbit--same as flyby

4)  Elliptical orbit--same as flyby L

The selection of near-Earth equivalent as a design environment for

magnetically trapped radiation about Mars was based on a qualitative

analysis considering sources of radiation, Mars magnetic field strength,

Mars atmospheric characteristics, and radiation-loss mechanisms.

Opinions from Dr. J. Van Allen, Iowa State University; Dr. G. de

Vaucouleurs, University of Texas; Dr. Hess and Dr. S. Hennes, Goddard

Space Flight Center; and Dr. S. Neddemyer, University of Washington

were solicited. In every case these authorities noted that the mag- ¢
netically trapped radiation at Mars can be expected to be less than

that of Earth.
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Figure 2-1: Omnidirectional Flux of Electrons Along Magnetic Equator
for Various Earth Radii (L)
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The rationale for establishing the intensity and spectral distribution
for the Mars radiation belt is based on Earth analogy. The primary
component of trapped radiation in the Earth's inner Van Allen belt
consists of high-energy (10 mev< E <100 mev) protons formed from albedo
neutron decay. The sources of the neutrons are nuclear disintegrations
of atmospheric nuclei caused by galactic cosmic radiation. Much less
is known about the outer belt source and loss mechanisms for trapped
radiation. A few generalizations can, however, be made. It is clear
from observations of Injun III and other satellites that the solar wind .
is the basic source of the particles. These electrons are injected in
the magnetosphere at the magnetopause and are subsequently accelerated to
auroral energies and beyond by magnetic perturbations (magnetic pumping).
As particles move onward, magnetic pumping increases their energy.

Large scale losses of particles can be caused by large magnetic per- @

turbations, as verified by various satellite measurements.

The galactic cosmic radiation will be approximately the same near

Earth and Mars, and the difference in composition of the two atmospheres
is relatively unimportant from the point of view of nuclear collisions.
Hence, the source mechanism for inner belt protons on Mars will be

essentially the same as that for Earth.

Since Mars is farther than the Earth from the Sun, the solar wind @
pressure and density will be smaller. Furthermore, Mars has a smaller
magnetic field-- less than half that of Earth. Due to the

weaker solar wind, fewer particles are available at the boundary of the

magnetopause, and a smaller probability of injecting these particles into
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the magnetosphere exists. Once these particles are in the magnetosphere,
the weaker solar wind also decreases the probability of favorable
circumstances necessary to energize the particles up to auroral energies
and beyond. Hence, the source mechanisms for outer belt electrons are

less favorable for injection around Mars than around Earth.

Relative to the inner belt protons, two major aspects of the loss pro-
cesses should be considered: (1) the exospheric density, and (2) the
magnitude of the magnetic flux density. High-energy protons (Ep> 300 Mev)
are degraded in energy primarily by nuclear collisions. They lose

energy and eventually are lost from the belts by continued inelastic
collisions with the background exospheric gas. The lower edge of the
inner belt will be truncated at an altitude where the background gas
density is high and the loss rate is high. For all practical purposes,
this occurs in the terrestrial trapped radiation at a nominal altitude of
500 kilometers. The outer boundary of the inner belt occurs where the
magnetic flux density becomes too small to trap the high energy protons.
In this case, the particles experience during one gyration a considerable
change in magnetic field, and undergoes an irreversible transfer of

energy to the magnetic field. Consequently, it is not trapped.

Since the specified Mars surface magnetic field is no more than half
that of the Earth, the adiabatic loss rate ( AB/B) is larger on Mars
than on Earth for the same scale of distances. Of much more importance
is the relationship of the exospheric densities. Although the surface
pressure and density on Mars are very small in comparison to those on

Earth, the scale height is much larger. As a consequence, the exospheric
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density on Mars is much greater than on Earth. As an example, consider
that the peak flux intensity for the inner belt occurs at 5000 kilometers
from the center of Mars. This distance corresponds to an altitude of
approximately 1500 kilometers above the martian surface at a density

of approximately 2.7 x 10-1’4 g/cm'3. The Earth's atmosphere has a
similar density at an altitude below 400 kilometers. Hence, the heart
of the inner belt on Mars lies in a region of atmospheric density
greater than that of the Earth. Consequently, the inner-belt proton
component on Mars must be vanishingly small, at least several orders of
magnitude below the comparable terrestrial flux. Inclusion of polar-
cap splash albedo and other refinements to the general knowledge of

the inner belt, does not appreciably modify these conclusions.

Since so little is known about the loss mechanisms for outer-belt
electrons on Earth, it is difficult to compare them to those on Mars.

It is, however, still quite reasonable to assume that the loss mechanism
should be greater on Mars. The weaker magnetic field should offer

less possibility of containment, and the higher background gas density
should offer a greater rate of energy transfer. Hence, the loss
mechanisms for outer-belt electrons should be greater for Mars than

for Earth.

In the case of the outer belt, the source is weaker and the loss is

greater for Mars than for Earth. It is difficult to estimate how much
smaller the outer belt flux will be for Mars than for the Earth, but it
certainly cannot exceed the terrestrial trapped radiation. In the case

of the inner belt, the source is approximately the same, but the loss
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rates are several order of magnitude greater on Mars than on Earth.

Hence, the inner belt proton population should be quite small. Therefore,

selection of near-Earth equivalence as the Martian design environment

for trapped radiation belts is reasonable and very probably quite

conservative.

Galactic

Cosmic Radiation--This consists of the following:

1) Near-Earth

a) Primary Radiation
(1) Omnidirectional Flux
(2) Heavy particles 1.5 particles/(cm? - sec) during solar maximum
4.0 particles/(cm2 - sec) during solar minimum
(3) Electrons 1072 to 1071 electrons/(cm? - sec) (E >100 Mev)
(4) Gammas 10 to 40 protons/(cm? - sec) (E~100 - 200 kev)
Average Yearly Flux -- 7.8x107 particles/cm2
Estimated Maximum Peak Yearly Flux During Year of Solar
Minimum -- 1.2x108 particles/cm2
Integrated Dosage -- 6 to 20 rad/year
Composition -- (see Table 2.2-7),
Table 2.2-7: ELEMENTAL COMPOSITION OF PRIMARY GALACTIC COSMIC RAYS
Element Atomic No.,Z Percent of Total
Hydrogen 1 80 to 85
Helium 2 11 to 16
Light Nuclei (L) 3£z<K5 2
Medium Nuclei (M) 6<Z2<9 1
Heavy Nuclei (H) Z210 3
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Spectral Distributions--Spectral distributions of integral
flux are given in Figure 2-4 for the total primary galactic
cosmic radiation and in Figure 2-5 for the various heavy

particle component.

b) Secondary radiation in upper atmosphere:

(1)
(2)
(3)
(4)
(5)
(6)

Cruise:

Omnidirectional flux

Peak total flux ~ 7 particles/(cm2 - sec)
Peak electrons ~ 3 particles/(cm® - sec)
Peak gammas ~ 2.5 particles/(cm2 - sec)

Peak neutrons and protons~ 3 particles/(cm2 - sec)

Peak total mesons ~ 0.7 particle/(cm2 - sec)

a) Primary Radiation--As for the Earth, using solar minimum flux

values and upper-limit dosages.

b) Secondary Radiation--No secondary galactic cosmic radiation.

Flyby--Same as cruise.

Circular Orbit--Same as cruise.

Elliptical Orbit--Same as cruise,

Radioisotope Thermoelectric Generator Radiation--This consists of the

following:

1)

Near-Earth--Dose rates from unshielded source (right circular

cylinder, L/D = 1). Total radiation dose rates (millirad/hr)

froma 2000-thermal-watt plutonium power source (estimated maximum

electrical power~ 100 watts) are shown in Table 2.2-8.
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Table 2.2-8: RADIATION

Radiation Type Distance from Center of Source
(millirad/hr) 1 Meter 2 Meters 3 Meters
Neutrons 15 3.8 1.7
Gamas 2-9 007 003

2) Cruise--Same as for near-Earth.
3) Flyby--Same as for near-Earth.
4)  Circular Orbit--Same as for near-Earth.

5) Elliptical Orbit--Same as for near-Earth.

Solar Cosmic Radiation--This consists of the following:

1)  Solar Flares
a) Near-Earth

(1) Time-integrated flux is shown in Table 2.2-9.

Table 2.2-9: SOLAR FLARE EVENT ENVIRONMENTAL REQUIREMENTS

Parameter Requirement
Peak proton flux (E >30 Mev) 1.3x10” protons/(cm® - sec)
3
Peak proton flux (E >100 Mev) 3.8x10 protons/(cm2 - sec)

Time-integrated proton flux per 1.0x10° protons/cm2
flare (E >30 Mev)

8
Time-integrated proton flux per 2.6x10 protons/cm2
flare (E>100 Mev)

Time-integrated proton flux per 1.OxlO10 protons/(cm2 - yr)
year (E >30 Mev)

Time-integrated proton flux per 9.6x10° protons/(cm? - yr)
year (E>100 Mev)

2-59




2)

b)

BOEING

D2-82709-1

(2) Spectral Distribution--Power-law representation using above
data at 30 and 100 Mev.
Cruise--As for near-Earth, using (l/R)2 of distance in A.U. from

Sun for implied spatial continuity.

c) Flyby--Same as for cruise.
d) Circular orbit--Same as for cruise.
e) Elliptical orbit--Same as for cruise.
Solar Wind
a) Near-Earth
(1) Mean values of solar wind
(a) Mean Density 0.5 A.U. 20 hydrogen atoms/cc
1.0 A.U. five hydrogen atoms/cc
1.75 A.U. two hydrogen atoms/cc
(b) Mean Flux 0.5 A.U. 8x108 hydrogen atoms/(cm® - sec)
1.0 A.U. 2x108 hydrogen atoms/(cm® - sec)
1.75 A.U. 10° hydrogen atoms/(cm2 - sec)
(2) Mean velocity of solar wind from 0.5 A.U. to 1.75 A.U. =
450 to 500 km/sec.
(3) Electron Flux: 103 electrons,Cm3 for energies of a few
electron volts.
b) Cruise--Same as for near-Earth for the proton components.
c¢) Flyby--Same as for cruise.
d) Circular Orbit--Same as for cruise.
e) Elliptical Orbit--Same as for cruise.
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Auroral Radiation--This consists of the following:

1)  Near-Earth
6 2
a) Peak proton flux (E >100 kev)--10° protons/(cm® - sec)
b) Electron Flux
(1) Acti . 11 12 2 .
ctive displays--10"" to 10 electrons/(cm - sec) with
energies near.~¢g kev.
(2) Quiescent displays--lolo electrons/(cm2 - sec) between 30 ev
and 1 kev.
2)  Cruise--No auroral radiation.
3) Flyby--No auroral radiation.
4) Circular orbit--No auroral radiation.

5) Elliptical orbit--No auroral radiation.

2.2.4.7.2 Charged-Particle Radiation
Figures 2-6 and 2-7 show the radiation doses, dose rates, particle fluxes,
and fluences for which the spacecraft will be designed (fluence is the

number of profiles per unit area).

The particle fluences and doses are additive. The values shown in the
figures are for light metals (aluminum, magnesium, etc.) or for organic
materials, whichever leads to the higher dose. The effective thickness of
material (as used in the figures) is the total area density in grams/cm2

between the source and the component in question.
Earth and Mars radiation environment is approximately isotropic and the

values shown are for a point in space. Those as a function of thickness

are for a point within a spherical shell of uniform thickness. The
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values in a vehicle must be calculated considering the actual thickness
between the component and space. Variations due to thickness should
be proportioned according to the solid angle subtended by each sector

of a given thickness.

For thicknesses of 1 gram/cm2 or less, the solar charged particle
radiation environment will be considered isotropic. For thicknesses
greater than 1 gram/cm2, the flux will be considered as a collimated

beam from the Sun.

The JPL preliminary Voyager specification was used for the solar wind

and particle events. However, an exponential rigidity spectrum was
fitted to the flux values for determining dose near the surface

rather than the power law representation specified by JPL. The specified
power law indicates an infinite dose at zero shield thickness. To
determine a more realistic depth dose curve, an exponential rigidity
spectrum was fitted to the flux values that were specified. The
resultant average rigidity of P, = 87.5 Mv agrees very well with data

from Solar Cycle 19 for the year of maximum fluence, 1959.

The dose was evaluated from both the power law and exponential rigidity.
The power law representation was used down to 10-2 grams/cm2. Below this,
a value was used that was between the two except the surface dose was

limited to 10° rads as predicted by the exponential rigidity.

2¢2.447.3 Solar Ultraviolet

Portions of the spacecraft exposed to the Sun will be designed to
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withstand 4200 equivalent Sun hours (ESH) ultraviolet during cruise

and 2400 ESH ultraviolet during Mars orbit. An equivalent Sun hour is
the time-integrated intensity (watt—hours/ftz) of ultraviolet energy
corresponding to 1 hour exposure to the Sun at 1 A.U. The solar
ultraviolet is defined as that portion of the solar spectrum defined by

the Johnson curve with wavelengths of 3800 angstroms of less.

2.2.4.8 The Meteroid Environment
Near Earth--The near-Earth design particle flux is given by:

log N = -17.0 ~1.70 log M (1)

where N = number of particles/(m2 - sec) of mass M and greater

The density of particles is given by P = 0.4 gram/crn3

The velocity of particles is V = 30 km/sec (as given by W.M.
Alexander, C.W. McCracken, L. Secretan and O.E. Berg in "Review
of Direct Measurements of Interplanetary Dust from Satellites and
Probes," a paper presented at the COSPAR meeting, May 1962).

The graph of Eaguation 1 is shown in Figure 2-8.

Cruise--The near-Earth cruise design particle flux is given by:

log N; = -13.80 -log M + 2 log (0.44/p) (2)
for 10719 grams < M

and

log Np = -14.48 - 1.34 log M + 2.68 log (0.44/p) (3)
for M < 10719 grams
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where NE = number of particles/(m2 - sec) of mass M and greater
in the vicinity of the Earth
P =0.4 gram/cm3
v

av = 40 km/sec

The near-Mars cruise design particle flux is given by

log Ny = -13.30 - log M + 2 log (0.44P) (4)
for M > 10717 grams

and

log Ny = -13.98 - 1.34 log M + 2.68 log (0.44/p) (5)
for M<lO"l'9 grams

The cruise transit design particle flux is selected as the average of
the values obtained from the near-Earth cruise design particle flux
(Equations 2 and 3) and the near-Mars cruise design particle flux
(Equations 4 and 5). This has the merit of simplicity and is not
significantly different from either extreme. The resulting design

equations are:

log N, = -13.45 - log M + 2 log (0.44/p) (6)
for M > 10-1'9 grams

and

log Ny = =14.23 - 1.34 log M + 2.68 log (0.44/P) (7)

-1.9
for M<10 grams

In Equations 2, 3, 4, 5, 6, and 7

N = number of particles/(m2 - sec) of mass (M) and greater
P = 0.4 gram/cm°
V_ = 40 km/sec
av

The subscripts E, T, and M refer to near-Earth cruise, transit

cruise and near-Mars cruise, respectively.
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The near-Mars cruise design asteroidal flux is given by:

log Ny = -11.7 - log M (8)
where Ny = number of particles/(m2 - sec) of mass M and greater
Py = 4.37 grams/cm3
V=24 km/sec o

The derivation of Equation 8 is given at the end of this section.

The graphs of Equations 2, 3, 4, 5, 6, 7, and 8 are shown in Figure 2-9.

Near-Mars--The near-Mars design particle flux is given by:

log N = =17.20 - 1.70 log M (9) ®
for M < 1070°7
and
log N = -13.30 - log M + 2 log (0.44/P) (10)
5.7
for M > 10

where N = number of particles/(m2 - sec) of mass M and greater
P = 0.4 gram/cm°
V,, = 40 km/sec

The near-Mars design asteroidal flux is given by:
log Ny = =11.7 = log M (11) ¢
(Note: Equations 8 and 11 are identical)

Graphs of Equations 9, 10 and 11 are shown in Figure 2-10.

On the basis of both theoretical considerations (G. S. Hawkins, "Asteroidal
Fragments," Astron, J., 65, 318, 1960; S. Piotrowski, "The Collisions
of Asteroids," Acta Astron, 5, 115, 1953) and observational data (C.H.
Shuette, "On the Total Mass and Numbers of the Minor Planets," Pop. Astron,

58, 438, 1950), the size distribution of asteroidal grains can be
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represented by a log-normal distribution of the form

dY = ¢, a3 da, (12)
where dY is the number of particles with radii between a and (a + da).
Alternatively, Equation 12 can be expressed as a mass distribution:

ay = ¢, /3 au, (13)
These relations are assumed to be valid over the entire range of
asteroidal debris, from the smallest particle retainable under the com-
bined influence of solar gravitation and radiation pressure (the
Poynting-Robertson limit).

M, = 4.7 x 107% gm, (14)
and the largest planetoids (excepting the unique case of Ceres), with
masses of the order

22

M) = 5.0 x 10°° gm. (15)

The foregoing extremes are calculated using an assumed mass density of

4.37 gm/cm°.

Assuming this variation to be representative of the total population,

an upper limit to the density of planetoid grains in the neighborhood

of Mars (at 1.52 AU) will be obtained in the debris is assumed to be
uniformly distributed throughout the volume Va of a cylindrical shell,
bounded in the radial direction by the orbits of Mars and Jupiter

(1.5 and 5.2 AU, respectively) and in the axial direction by planes
parallel to the ecliptic, at a distance, h, to either side. An estimate
of the distance, h, is given by the product of 2.9 AU (the average
distances of asteroids from the Sun) and tan E, where 1 ~ 10° is the
mean inclination of asteroid orbits, giving h ~ 0.51 AU (C. W. Allen in

"Astrophysical Quantities," University of London, Athlone Press, 1955).
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The volume, V5, turns out be approximately 2.67 x 1041 cm3. With the
assumption of a uniform distribution throughout Va and an average collector
speed of U ~ 24.14 km/sec, corresponding to a target in orbit about Mars,
the differential influx rate dN of asteroidal particles is related to

dY of Equation 13 by

dN = é% 4y = _%gl_ w23 am (16)
which can be integrated to give the cumulative influx rate of particles
with mass 2 M grams:

log N = log (3Ucl/2\’/a) -0.67 log M. (17) ®
All that remains is to evaluate the constant Cl from the total mass
M, of asteroidal material which is given by C. W. Allen as 2 x 1024 gm.
Mp is represented symbolically by the integral (from My to M1) of MdM
so that
MA—-3 c3 mll/3. (18)
giving ¢y ~1.31 x 1016, Substituting evaluated quantities into Equation
17 and allowing for gravitational enhancement of the particle density
(from D. B. Beard, "Interplanetary Dust Distribution," Astrophysical Journal,
Volume 129, 1959), we obtain

log N = =11.7 - 0.67 log M (19)
where N is expressed in particles/(m2 - sec) and M is in grams. To
obtain a limiting case, the coefficient of log M may be increased to
-1.0, corresponding to Earth-based observations of the mass distribution
of stony meteorites (from G. S. Hawkins). Thus, the upper limit of the ¢
cumulative influx rate of asteroidal grains in the near-Mars environment

is taken to be

log N = =11.7 - 1.0 log M. (20)
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2.2.4.9 Electromagnetic Environment

Near-Earth Magnetic Field (Geomagnetic Field)--The geomagnetic field is

evaluated from the magnetic potential

w N
n+1
V= az z (%) Pg (cos 8) (9?11 cos mA+ hgl sinmA )

n=0 m=0
where a is the mean radius of the Earth and r, 8, and A are spherical
coordinates with origin at the Earth's center. The variable, r, is the
distance from the Earth's center; 6 the geographic colatitude; and A the
geographic longitude. The Gaussian coefficients, g: and hg s are as given
by Jensen and Cain ("An Interim Geomagnetic Field" J. Geophys Res 67, 3568,
1962). This representation of the magnetic field represents the geomagnetic
field out to 6 to 7 Earth radii. Beyond this point the geomagnetic
field becomes distorted by the solar wind. A transition occurs at 11
to 15 Earth radii where the magnetic field becomes erratic and a second
transition at approximately 20 Earth radii at the outer boundary of the
transition region. Beyond this point the magnetic field is that of

interplanetary space.

Cruise Magnetic Field{Interplanetary)--The field strength of the inter-

planetary magnetic field ranges from O to 20 gamma (lO5 gamma = 1 gauss),
depending on solar activity in the vicinity of 1.0 AU; it averages about

5 gamma. A maximum upper limit may be as high as 100 gammas

Flyby Magnetic Field (Martian)--A model for the Martian magnetic field

based on theoretical calculations would have a large factor of uncertainty.
The estimates tend toward upper limits; thus, the martian field strength

-3 -
may be between 10 =~ and 1 gauss where 10 3 is approaching the estimates
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for the interplanetary magnetic field. Until measured data are available
which will allow more definitive estimates of the martian magnetic
field, the maximum equatorial field strength in Mars magnetic field is

assumed to be half that of the Earth at the same relative altitude.

2.2.5 Planetary Quarantine

The probability of contaminating the planet with any one launch will be
no greater than 1 in 10,000. Apportionment of the 1-in-10,000 constraint
probability among the contributing events was made on the basis of
engineering judgment. Considerations leading to the apportionment are
discussed fully in Volume B, Section 3.3. Presented below are the

constraint values in relation to the total constraint.

1) Centaur booster impact P, = 0.5 x 10_5
2) Sterilization canister impact P. = 0.5 x 1073 ®
3) - Flight capsule contamination P = 3.0 x 107
4)  Flight spacecraft contributions P, = 6.0 x 107
a) Impact 3 x 107
(1) At encounter 1 x 10-5
(2) From orbit 2 x 107° ¢
b) Contamination by propulsion
system products 1 x lO_5
(1) Orbit insertion propulsion 0.4 x 10_5
-5

(2) Orbit trim propulsion 0.4 x 10
(3) Attitude control 0.2 x 10
c) Contamination by meteoroid

spalling ejecta 2 x 10
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2.2.6 Attitude Control Restraints

The amplitude of spacecraft attitude control limit cycle must be held to
10.2 degree along each axis to maintain overall pointing accuracy of the
high-gain antenna within +0.6 degree. This restraint may be relaxed

during most of the transit portion of the mission to +0.4 degree attitude

control limit cycle.

2.2.7 Vehicle Orientation Restraints

Operation of high-gain antenna ({GA) communication is dependent on
vehicle orientation because in some attitudes the vehicle shadows the
antenna line of sight to Earth. The HGA hinge axis can point the antenna
no closer than 30 degrees to the vehicle negative-Z axis (toward the nose
of the shroud). The combination of hinge motion and vehicle roll permits
the HGA to cover all of the celestial sphere except the 30-degree cone
centered on the negative-Z axis. Within this available field of view,
HGA pointing still depends on restricting vehicle roll attitude to cer-

tain ranges.

During an early midcourse maneuver, reorientation of the vehicle must

be accomplished in a definite sequence to avoid having low-gain antenna
radiation pattern nulls point at the Earth. The proposed sequence iss
first, rotate the vehicle about its Y axis to align the X axis as
closely as possible with the Earth-look line; second, rotate the vehicle
about its X axis to align the X-Z plane so that the desired thrust
direction lies in the X-Z plane; finally, rotate the vehicle about its Y
axis is to align the thrust axis with the desired thrust direction.

This procedure allows the Earth-look angle to remain approximately 15
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degrees of the maximum of the antenna patteun.

2.2.8 Reliability

The spacecraft design is rigidly disciplined as part of a rigorous
reliability program detailed in Section 3.0. The design restraints of

that program are briefly summarized.

Redundancy--Within the spacecraft design restraints such as weight,
volume, etc., all primary mission functions will be designed with a re-
dundant mode. Insofar as possible, the redundant mode will be command-
ed, actuated, and performed by equipment not involved in the primary
mode of operation, and its elements will have a different failure pat-
tern. Redundant modes providing highly reliable backup will be consid-
ered, even at the expense of some reduction in performance. Effective
application of redundancy will be assessed using failure mode and effect

analysis techniques.

Parts Selection--The parts used in the design will be selected from the

Voyager JPL-approved parts list. This list will consist of highly re-
liable space-proven electronic parts selected from the JPL Sterilizable,
Hi-Rel, and Preferred Parts Lists and supplemented with necessary parts

of comparable reliability.

Parts Derating--Parts will be applied in the design in accordance with

the derating criteria in the Voyager JPL-approved parts list.
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Materials Selection--Materials used in the design will be selected from

Voyager JPL-approved materials list. Nonmagnetic materials will be used

whenever possible.

Processes Selection--Processes specified for the manufacture of the

design will be selected from the Voyager JPL-approved processes list.

Design Margin--Adequate margins for tolerance buildup and drift will be

provided and assured by appropriate use of worst-case a.c., d.c., or

transient analyses.

Thermal Analysis--Adequacy of thermal design of circuits and components

will be assured by thermal analyses.

Reliability Assessment--A quantitative numerical assessment will be per-

formed at the component level to determine compliance with the relia-

bility allocation.

Failure Mode, Effect, and Criticality Analyses--During the early design

phase, these analyses will be made at the system level and expanded to

include the component level.

Design Review--All system, subsystem, and major component designs are

critically reviewed at major milestones throughout the design phase.

Subcontracted Design--Subsystem and major component designs will be

controlled to the same standards as the contractor designs by rigid
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design specifications imposing reliability requirements consistent with
the Reliability Program Plan defined in Section 5.0 of this volume. When
off-the-shelf designs are used, the design shall include part quality
control, proper application of parts, and qualification for the

Voyager mission.

Test Requirements--System, subsystem, and component reliability assurance

tests shall be specified and performed in accordance with the integrated

Test Program designated in Section 7.0 of this volume.

2.2.9 Safety

The spacecraft design is developed in concert with the Safety Program
detailed in Section 5.0. The design restraints of that program are

briefly summarized.

Electroexplosive Devices (EED)--The electroexplosive design requirements

which affect safety are discussed in Section 2.1.3.8 of this volume.

Pyrotechric Safing--Switches will be incorporated to maintain pyrotechnic

equipemert in a safe condition while activation would be hazardous to
personnel or equipment. Unlatching devices will be protected against

spurious signal unlatch.

Pressure Vessels--Vessels hazardous to personnel shall be designed with

adequate safety margins. Each design will be analyzed, potential
hazards identified, and specific safety requirements set as discussed in

the Safety Plan in Section 5.0, Safety Margins of 2.2 for hazardous
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pressure vessels and 1.15 for rocket motor cases shall be considered a
normal minimum. Vessels with wall thickness-to-diameter ratios smaller

than 1/1000 shall be avoided.

Fault Analysis--The safety of the design will be evaluated and poten-

tial critical fault paths identified using the "Fault Tree Analysis"

technique discussed in the Safety Plan in Section 5.0

Design Review--Design reviews conducted throughout the design phase as

part of the Reliability Program will be utilized to assure the integra-

tion of the safety requirements into the design.
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2.3 GUIDANCE AND NAVIGATION--MANEUVER ACCURACY AND PROPULSION
REQUIREMENTS

The maneuver accuracy reguirements for all thrusting periods after
trans-Mars injection and the AV requirements for midcourse maneuvers and
orbit trim are presented in this section. The analysis leading to these
requirements is presented in Volume B, Subsection 3.1, and the detailed
allocation of the accuracy requirements to component error sources

(gyro drift, accelerometer bias, thrust vector control, etc.) is pre-

sented in Volume A, Subsection 3.8.

2.3.1 Maneuver Accuracy Requirements

For all maneuvers, it is desired to provide total control accuracies as

follows:
1 6 pointing error < 0.010 radian
1 6 AV proportional error < 1.0 percent of AV
1 6 AV resolution erTor L 0.01 meters per second for mid-

course corrections and
orbit trim

L 4.5 meters per second for
orbit insertion

These accuracies allow control of the Mars encounter to 500 kilometers,
and control of final orbit periapsis to 30P4 5 kilometer, and semimajor

axis to 30a4£ 30 kilometers.

2.3.2 Midcourse Maneuver AVRequirements

TheAvrequired for correction of trajectory errors due to random injec-
tion and maneuver execution errors is 48 meters per second. This re-

quirement is based on a nominal midcourse correction sequence which in-
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cludes three corrections--one at 5 days, one at 25 days, and one at 175
days after launch. It is deemed desirable to addAVto this requirement
to allow correction of nonabortive failures during trans-Mars injection
and midcourse maneuvers. Although the latter is not an easily defined

quantity, because no Centaur data are available from which to make es-

timates, an increase of 50 percent in totalAvrequirements is a logical
estimate. Also, a small additional Avis required for aim-point biasing.

The total midcourseAvrequirements is then about 75 meters per second.

2.3.3. Orbit TrimAVRequirements

Orbit trim is assumed to take place in two steps. The first will be a
trim maneuver at orbit apoapsis and will take place after the first few
orbits which will be allotted to orbit determination. This maneuver
will require about 1% meters per second for adjustment of periapsis
altitude. After the first maneuver, the uncontrolled orbit parameters
will be slightly perturbed, therefore, a few orbits must be allowed for
orbit redetermination. The second trim maneuver will then be executed
at periapsis to control the semimajor axis. This maneuver will require
another 75 meters per second. A conservative estimate, therefore, of
the orbit trimAv requirement including a small allotment for changing

the nominal orbit will be 100 meters per second.
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2.4 AIMING POINT SELECTION

2.4.1 Scope

This section describes relevant capabilities and constraints for systems,
spacecraft subsystems, and scientific experiments that influence the
aiming point selection for the 1971 Voyager mission. A procedure is
illustrated by which these constraints are considered in the selection of

an aiming point.

2.4.2 Aiming Point Description

The aiming point is specified by two components of the impact parameter,
B. The impact parameter is a vector perpendicular to §, which is in the
direction of the approach asymptote to the planet. B has a magnitude
equal to the distance from the planet center to the asymptote of the
approach hyperbola. The two components of B used to specify the aiming

point are the projections along the T and R unit vectors. T is a unit
vector perpendicular to S and parallel to the ecliptic, while R=5xT.
The aiming point is then specified by the components B « T and B + R, or
by the magnitude b =, §| and the direction 8, where 8 is the angle between

T and B measured positive in the clockwise sense in the R-T plane (s

into the R - T plane). See Figure 2.4-1.

It should be noted that the choice of an aiming point does not signifi-
cantly affect the heliocentric trajectory. The direction of S is a func-
tion of launch date and arrival date, and is essentially the same for all
aiming points in the vicinity of Mars. The asymptotic velocity V , is

similarly unaffected by the choice of aiming point. On the other hand,
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Figure 2.4.-1: Aiming Point Geometry

2-83



BOEING

D2-82709-1

for a fixed S and Vg variations in the Mars-centered approach hyperbola

are directly related to changes in B.

2.4.3 Mission Objectives

The mission objectives affect the aiming point selection by specifying the
relative weightings given to the various scientific experiments. The

most significant influence of these weightings is in the selection of the
inclination of the orbit about Mars, which in turn specifies the aiming

angle, ©.

2.4.4 Design Characteristics and Constraints

2.4.4.1 Systems Considerations

Planetary Quarantine--The apportioned probability that the Flight Capsule

will contaminate Mars is 3 x 10—5. Contamination probabilities of 0.5 x

1072 have been assigned to the Centaur and the sterilization canister,
leaving a probability of 6 x 10—5 that the Flight Spacecraft will con-
taminate the planet, (See Section 3.3 Volume B). Revision of the alloca-
tions would affect the aiming point, because a different biasing dis-
tance would be required to achieve a satisfactorily low probability of

impact of the Flight Spacecraft.

Flight Spacecraft--The above-mentioned planetary quarantine requirement

places severe restrictions on the aiming point of an unsterilized space-
craft. The requirement that the orbit about Mars have at least a 50-
year lifetime defines the minimum periapsis altitude (and minimum | B|) for

an orbit with a given period. The aiming point must then be selected so
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that the probability of arriving at a lower periapsis is less than 3 x
10-5. The remaining 3 x 10_5 probability of contamination due to the
Flight Spacecraft is assigned to contamination while in orbit. Such con-
tamination would be due to propulsion system emissions, particles knocked

off by micrometeoroid impact, etc.

Launch Vehicle--The Launch Vehicle does not substantially affect the

choice of the final aiming point. Dispersions remaining after correction
of injecton errors, and biasing of the initial aiming point to prevent
Centaur impact, are covered in the discussion of guidance in Section

3.1.4.2. of Volume B.

Deep Space Instrumentation Facility--Insertion into the orbit about Mars,

and capsule entry, descent, and landing, will occur in view of the Gold-
stone DSS. Alternately, time phasing of periapsis (and landing) with
desired surface features is available by aim-point selection at inser-
tion to the cruise phase. Approximately one-third of the possible

choices can be viewed from Goldstone.

Space Flight Operations--To permit a maximum time for transmission of

commands from the Goldstone DSS just prior to orbit insertion, the inser-
tion maneuver is planned to occur during the latter half of the Goldstone

viewing period.
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2.4.4.2 Approach Trajectories

The choice of aiming point is influenced by both the characteristics of
the orbit about Mars and the type of approach trajectory used. In one
type, the nominal aimed periapsis altitude is selected so that there is
less than a 3x10"5 probability that the actual periapsis will be below
some minimum altitude. This minimum altitude is the one that just gives
a 50-year lifetime for the desired orbit period. This lifetime is com-
puted in a conservative manner, so that there is essentially no probabi-
lity that the orbit will have less than a 50-year lifetime if its periap-
sis is above the calculated altitude. With this aiming philosophy,
orbit insertion is aborted only if the angular orientation of the space-

craft is unsatisfactory.

Another approach mode uses postmidcourse tracking to trade assurance of
orbit insertion for a lower periapsis, which is advantageous to the
scientific mission. In this case the aim point is selected such that
there is some probability greater than 3x10-5 that the guidance disper-
sions place the periapsis below that of an orbit for compliance with the
planetary quarantine constraints. In this mode, tracking data would in-
dicate whether the periapsis altitude is going to be high enough to pro-
vide the required 50-year orbit life. In those cases where periapsis
altitude is not high enough, the orbital insertion manueuver would be
aborted. For the present Voyager analysis, however, estimates of
tracking dispersions and guidance dispersions are of such a magnitude
that this method has little advantage. For this reason the insertion

maneuver and aiming point are planned so that the decision to insert is

not dependent upon tracking data.
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The use of a solid propellant for the orbit-insertion propulsion system
creates a strong desire for a constant AV insertion throughout the launch
period. This can be provided by using a periapsis insertion mode for tra-
jectories giving a constant Ve as discussed in Section 3.1.2.3. In this
mode the orbit periapsis nearly equals the hyperbolic approach periapsis.,
(The word "nearly" is used to account for small differences due to finite

thrust, insertion guidance, etc.)

Constant AV insertion can also be obtained by designing the approach tra-
jectory and insertion mode to accommodate varying V. This requires an in-
efficient insertion mode at the lower V. There are two ways to accomp-
lish this. One is the "intermediate-orbit" mode, in which the space-
craft is initially placed into an orbit with apoapsis nearly equal to

that of the desired final orbit, but with periapsis a few hundred kilo-
meters higher than the desired final value. A subsequent orbit trim man-
euver near apoapsis is used to adjust the periapsis altitude. The
principal drawback to this mode is the reliance on the orbit trim man-
euver to achieve an orbit which is favorable for the scientific experi-

ments,

Another way of obtaining constant AV for varying Voo 1s the "nonperiapsis"
insertion" mode, in which the excess AV capability is expended in the
inefficient insertion. This causes the position of periapsis to be moved

from the location it would have had for periapsis insertion. This affects
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the illumination at periapsis and could be favorable or unfavorable, de-
pending upon the geometry for the particular trajectory. A disadvantage
of this mode is that considerable tracking is required for computation

of the time of insertion, and there may not be a sufficient time interval
after the last midcourse correction to accomplish this. Both of these ®
alternate approach and insertion modes require a higher periapsis alti-
tude for the approach hyperbola than is desired for the orbit about Mars.
Therefore, the magnitude of B would be greater than that for the periap-

sis insertion mode.

Using an impact trajectory for the Planetary Vehicle, and deflecting the
Flight Spacecraft after separation of the Flight Capsule, has an exces-
sive probability of contaminating Mars unless the spacecraft is sterilized.
Even if the spacecraft is sterile, this approach mode offers little o
increase in landing-site accuracy, and the extra maneuver degrades the

probability of achieving a successful orbit.

2.4.4.3 Flight Spacecraft Science Subsystem Consideration

The spacecraft scientific instruments indirectly influence the selectiaon
of the aiming point through their influence on the orbit about Mars.

Most of the experiments benefit from a comparatively low altitude, so the
aiming point is chosen as low as the planetary quarantine requirement al-
lows. The aiming angle, ©, (See Figure 2,4-1) is chosen to provide the ®
desired orbit inclination. The choice of inclination is covered in

Section 3.1.4.
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2.4.4.4 Telecommunications

The spacecraft is continuously in view of Earth during the approach to
Mars and through orbit insertion. During capsule entry, descent, and
landing, the spacecraft will be able to communicate with the capsule and
with Goldstone. The aiming angles (@) that satisfy this constraint are

indicated in Section 2.4.5.

2.4.5 Selected Aiming Points

The magnitude of |§, is chosen so that the probability of having a per-
iapsis altitude too low for a 50-year orbit lifetime is less than 3 x

10—5. For example, the minimum periapsis altitude is 2000 kilometers for an
18-hour orbit. For this periapsis altitude and a Y _of 3.5 kilometers

per second, the B is 8145 kilometers. However, meeting the planetary
quarantine constraint (3 x 1072 probability of contamination) and allow-
ing for guidance dispersions requires aiming for a larger | Bl . With an
assumed 10 dispersion of + 167 kilometers, al §I of at least 8814 kilo-

meters must be used for the aiming point.

Because most of the scientific experiments benefit from low periapsis
altitudes, the minimum of 8814 kilometers is chosen to be the aimed
magnitude of B for this example. Considering another example, a 9-hour
orbit similarly requires a minimum periapsis altitude of 3100 kilometers,

and has a desired B of 10,170 kilometers.

The aiming angle ©, which describes the direction of §, is a prime con-

sideration in the choice of orbit inclination. Earth, Canopus and Sun
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occultation periods place constraints on © and outline a region of ac-
ceptable aiming points. This limits the choices of inclination. Figure
2.4-2 shows how these constraints are applied for a representative ex-
ample. The particular trajectory used as an example is one in which the
Planetary Vehicle is launched on April 30, 1971, and arrives on October
31, 1971, with a V of 3.527 kilometers per second. Various regions are
outlined to illustrate the effects of the constraints. Region A is un-
acceptable because !E/ is less than the 8814 kilometers minimum described
in the previous paragraph. Region B is unacceptable because Earth occul-
tation occurs before encounter, i.e., continuous communication cannot be
maintained during the approach to Mars. Region C is unacceptable because
at some point on the approach hyperbola some part of Mars comes within

10 degrees of the spacecraft-Sun line. This is close enough to cause loss
of attitude reference during a critical phase of the mission. The two
regions, D and E, are shown to account for the possibility of Mars enter-
ing the rectangular field of view of the Canopus sensor. Region D cor-
responds to a 35-degree conical field of view and Region E corresponds to

a 60-degree conical field of view.

An aiming point within Region D is unacceptable because Mars certainly
enters the field of view. With an aiming point within Region E, the
orientation of the Canopus Senser determines whether or not Mars enters
the sensor rectangular field of view. This artifice is used because
Boeing's quick-look computer program has not yet been updated to account

for rectangular fields of view., This is of small consequence for the
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orbiter mission study, however, since this computer program is one of the
preliminary steps in the orbital selection process. The critical deci-
sions are made after plotting the cone and clock angle of the center and
the .1imbs of Mars on a point by point basis throughout each candidate orbit.
On such a plot, the rectangular Canopus sensor field of view is represent-
ed so the times and duration of occultation, if any, are considered.

This chart changes only slightly with other transit trajectories of in-
terest. Figure 2.4-3 shows similar data for trajectory launched nine days
later and arriving 45 days later, with a (of approximately 2.85 kilo-

meters per second.

After the constraints on B and @ are identified (as shown in the examples)
the final selection of © depends upon the orbit inclination desired from
scientific data consideration. Figure 2.4-4 shows the relationship be-
tween © and orbit inclination for the example trajectory. As an example,
when the desired orbit inclination, chosen from considerations of occul-
tation and of science, is 40 degrees, the necessary 6 is 15.5 degrees.
Other aiming points within the acceptable region could be chosen, however,

and inclinations would range from 32 to 121 degrees.
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3.0 SYSTEM LEVEL FUNCTIONAL DESCRIPTION OF FLIGHT SPACECRAFT

System aspects of the Voyager Spacecraft development are covered in this
section. The trajectory choices are discussed in terms of mission versa-
tility subject to constraints on planetary contamination and on desired
photographic data; treatment of orbit determination errors indicates the
types of errors to be expected and their variances. Design parameters
for components of the Flight Spacecraft are discussed, following which
the nomenclature for identification of such components (and related docu-
mentation) is explained. Requirements on the interfaces between various
items of flight equipment and the launch vehicle are described; including
consideration of spacecraft separation, dynamic interactions during flight,
and launch vehicle performance. Telemetry criteria, including considera-
tions of data formatting, are discussed and a list of flight equipment
telemetry channels required for the Voyager system is provided. Guidance
and navigation maneuver errors are discussed as to sources of error and
variances. The Voyager Flight Sequence is delineated not only in general
terms but in terms of details of operation of various items of flight
equipment. The various features of the spacecraft layout, configuration,
and flight equipment are discussed; the discussion includes spacecraft
reference axes, mechanical alignment provisions, general arrangement of
the exterior, and provisions for equipment mounting. Considerations of
planetary quarantine and their potential effects on vehicle design are
discussed; requirements for flight equipment cleanliness are treated;

and the requirement for magnetic cleanliness is discussed.
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3.1 VOYAGER STANDARD TRAJECTORIES

3.1.1 Scope and Summary

This section describes a variety of trajectories that are applicable
to the 1971 mission. The capability of the preferred spacecraft design
is such that a number of trajectories and orbits for the 1971 mission
can be performed. In addition, the spacecraft capability affords con-
siderable versatility in performing missions in the 1973 through 1977

opportunities as well as for the 1969 opportunity for the test flight.

The spacecraft can enter biologically safe orbits with periods as low as
18 hours from approach velocities (Vo at Mars, as high as 3.5 kilo-
meters per second, or with periods less than 9 hours from approach
velocities as high as 3.0 kilometers per second. The 18 hour example
provides coverage of four different swaths of Mars surface in the first
3 days after encounter. For the 3.5 kilometer per second approach
velocity, encounter can occur when the annual Mars wave of darkening

has its maximum contrast. At these early arrival dates, orbital periods
greater than 18 hours can also be selected. Alternatively, in the
interest of obtaining more photographic data (at slightly lower quality),
lower orbit periods can be obtained for later arrival dates. For
example, the orbits at periods less than 9 hours can be established at
arrival dates in the medium contrast time of the wave of darkening where
Ve = 3,0 kilometers per second. Such lower orbits must have slightly -
higher periapsis altitudes, but they repeat their mssage more often,
taking and transmitting more photographic data during the orbiting pha se

of the mission.
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In 1973 missions, the Type I transit trajectories typically have a short
launch opportunity. The designed ability to accommodate Mars approach
velocities as high as 3.5 kilometers per second allows a 37-day launch
opportunity as compared to the 26-day launch opportunity of nearly mass

optimized trajectory sets.

Although the present mission plans do not include it, the option exists
of performing a similar orbital mission in 1975 over a relatively wide
range of arrival dates (on the order of 100 days), or in 1977, if Type II

transfers to Mars are used these years.

In 1971, orbits are available that have no occultation of Canopus or the
Sun for the first 60 days in orbit. The periapsis positions are at
southern latitudes and at illumination angles that favor the black-and-
white TV experiment. Some adjustment of periapsis position is available
at insertion by off-periapsis orbit insertion. Additional impulse
reserve for such an adjustment is obtained by choosing slightly later

arrival dates with the present design.

In this section, details of the missions are described through selected

examples from the available sets of trajectories.

3.1,2 Transit Trajectories

3.1.2.1 Transit Trajectory Design Criteria
Only Type I trajectories are considered for the 1971 transit trajectory.

They are characterized by shorter transit times (compared to the Type II
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trajectories) and lower communication distances. The transit trajectories
are selected to satisfy the operational constraints imposed by booster
payload limitations, DSN tracking capability, range safety, and spacecraft
propulsion capability. Figure 3.1-1 shows a basic trajectory design chart
of geocentric launch energy parameter (C3) as a function of launch and

arrival dates. The applicable constraints are indicated.

The transit trajectories, which satisfy the operational constraints, are
evaluated in terms of their =ffect on communication distance, ovservation
of the Mars wave of darkening phenomenon (a progressive albedo decline
that proceeds from the polar ice cap toward the equator), target illumina-
tion, transit time and compatibility with future missions. Figure 3.1-2
shows some of these effects. The blue curves show the illumination angle
at periapsis, measured from the terminator, for Mars orbit inclinations of
40 and 60 degrees. The areas bounded by the red curves show three "seasons"
of progressive contrast for the wave of darkening for latitudes from -60
to +20 degrees. The absissa for these curves is latitude rather than
launch date. Two arrival philosophies are considered for the transit
trajectories: (1) constant arrival date and (2) constant approach speed
at Mars. Each concept is discussed for its relative advantages and dis-

advantages.

3.1.2.2 Constant Arrival Date

The selection of a constant arrival date fixes the communication distance
at encounter. It also simplifies the scheduling of the DSN. It has the
disadvantage of a variable approach speed at Mars (Ve and a shortening

of the launch period for a given allowable geocentric energy.
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Three representative arrival dates have been selected in the region of
interest: October 18, November 25 and December 25, 1971. Each arrival
date has been evaluated to determine its advantages and disadvantages.
Table 3.1-1 shows a comparison between the trajectories for the above
fixed arrival dates. The comparison is made on the basis of maximum
launch period, communication distance, observation of the wave of darken-
ing, illumination angle, transit time, and compatibility with future
missions. The maximum launch period is the time between the limits of
launch azimuth and C3. All of the selected trajectories have launch
periods within the specified 45- to 60-day range. Communication dis-
tance at arrival favors the earlier arrival dates; 46 percent less for
October 18 than for December 25. Observation of the wave of darkening
also favors the earlier arrival dates., Arrival on October 18 would
allow viewing in the season of maximum contrast during the first orbits
and viewing at a time of maximum rate of change 1-1/2 months later. The
illumination angles favor the October 18 or November 25 arrival dates
for black and white television. Transit times for the early arrival
dates will be shorter implying somewhat greater reliability. Compat-
ibility with the 1973 mission can be inferred from the trajectory design
chart, Figure 3.1-3. Arrival date selection for the 1973 mission is
limited by DLA and C3 constraints. A Ve of 3.45 is pbtained during

the maximum launch period with a constant arrival date philosophy. The
difference in Veo for maximum launch period has been adopted as the
criterion for comparison of the 1973 and 1971 orbiter missions. Propul-
sion compatibility with the 1973 mission favors intermediate arrival

dates.
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approach velocity at Mars, Ve , of 3.5 kilometers per second. The
selection of this constant arrival velocity results in a relatively
fixed geometry at Mars encounter throughout the launch period. In
addition, a fixed-impulse solid-propellant motor may be used for the
orbit~insertion maneuver. The second spacecraft to be launched in the
1971 opportunity will have a trajectory with a nominal approach velocity
of 3.25 kilometers per second in order to maintain a minimum of 10 days
separation between the two spacecraft. The differential velocity of
250 meters per second (at encounter) between the spacecraft can be used
to adjust the arrival geometry to make it nearly the same for the two
spacecraft. For this, insertion will be made just prior to the hyper-
bola periapsis. Alternatively, orbits of different periapsis altitude
or period can be selected., Arrival dates will vary from October 31 to
November 15 for the first spacecraft and November 10 to November 30 for

the second spacecraft.

The resulting set of trajectories for the 1971 opportunity will have:
(1) a launch period of 54 days, (2) encounter communication distances
ranging from 108 X lO6 to 140 X 10° kilometers, (3) observation of the
wave-of-darkening phenomenon in the high-contrast season for the first

few days, and (4) illumination angles (measured from the terminator) at

periapsis of 35 to 40 degrees.

Launch Trajectory--Launch takes place from AFETR with the Saturn IB/

Centaur launch vehicle. A nominal booster trajectory profile is shown
in Figure 3.1-5, which includes the launch vehicle altitude, velocity,

flight-path angle, dynamic pressure and load factor as a function of
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time measured from liftoff. On any given day during the launch period,
the right ascension and declination of the geocentric asymptote remain
relatively constant. Figure 3.1-6 shows, in red, the range of launch
azimuths as a function of time of day for launches on April 30, June 8,
and June 23, 1971, These trajectories represent the maximum variations
in right ascension and declination (DLA) of the departure asymptote
within the 54-day launch period. The allowable launch sector of 71 to
108 degrees for the 1971 mission is indicated on the curve, along with
the tracking limitations to absolute values of DLA greater than 5 degrees.
A longer than 2-hour launch window is obtained for all these launch
dates., Examination of similar curves for the other launch dates indi-
cates a minimum launch window of 2 hours and a maximum launch window of
4.4 hours. The curves in blue on the figure show the various coast times
in the parking orbit., Limits on coast time of 2 minutes and 25 minutes
are indicated for a typical C3 (12 km2/sec2) by the blue shaded region.
The coast times for these particular days vary from 8 to 14 minutes on
April 30, from 2 to 18 minutes on June 8, and from 6 to 21 minutes on
June 23, The coast times will vary from 2 to 25 minutes over the entire

launch period.

Figure 3.1-7 shows the ground track of nominal trajectories for a

May 9, 1971 launch date. Four trajectories are shown that represent

the typical expected range in the launch azimuth. The locus of injection
points is indicated, as well as the rise and set times for various DSN
stations. Flight along the outgoing asymptote is essentially established
within approximately 15 hours, as indicated at the left portion of the

curve.
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Near-Earth Trajectory--The near-Earth trajectory phase begins at departure

from the Earth parking orbit with injection into the Mars transit traject-

ory.

Following injection into the Mars transit trajectory and separation from
the Centaur stage, the spacecraft moves along on Earth escape trajectory
until the Sun's gravitational influence becomes dominant over that of the
Earth. The typical variation in altitude with time during the near-Earth
trajectory phase is indicated in Figure 3.1-8 for May 9 launches. The

altitude is seen to increase to 400,000 kilometers within 30 hours.

Figure 3.1-9 contains the doppler parameters, that is, range, range rate,
and acceleration along the line of sight for the Johannesburg deep-space
station. Hour angle and declination are presented in Figures 3.1-10 and
3.1-11, The rise and set times are indicated for elevation angles of

10 degrees above the horizon. The time reference on these charts is
from the time of launch. Similar data has been calculated for the

Woomera, Goldstone, Madrid, and Canberra DSN stations.

Heliocentric Flight--During the heliocentric phase of flight, the Sun is

the dominant body and the planetary vehicle moves in a near-elliptical
trajectory. Figure 3.1-12 depicts the heliocentric phase of a typical
flight. The orbits of Earth, Mars and the transit trajectory are indi-
cated with the corresponding distances. The pertinept orbital parameters
for Earth and Mars are shown on the sketch., Figure 3.1-13 shows the
launch dates and arrival times for a Ve = 3.5 kilometers per second and

a Vo = 3,25 kilometers per second on a trajectory design chart. The

3-23



ALTITUDE (10 000 kin)

BOESING

D2-82709-1

35
30
25
20
15

10

0 5 10 15 20 25
TIME FROM INJECTION (HOURS)

Figure 3.1-8: Near-Earth Altitude (C3 =9.82 kmzlsecz)

3-24




RANGE RATE (km/sec x ]0']), RANGE ACCELERATION (km/sec2 x 1073),

1

RANGE (km x 10°)

N
(8,
(@]

200

150

100

O
(=)

o

1
O
(=

L
o
S

BOEING

D2-82709-1

RANGE RATE

ACCELERATION
1500
TIME FROM LAUNCH {MINUTES)

Q\RISE AT 10°

ABOVE HORIZON

SET AT 10°
ABOVE HORIZON

Figure 3.1-9: Johannesburg Doppler Data Range

3-25




HOUR ANGLE RATE (103 DEG/SEC)

BOCSING

D2-82709-1

180T
80—
150 f—
O0F 120}
90 |-
40
H
OUR ANGLE ~_
60
20 ~
w
W 30
o
0 HOUR ANGLE RATE
=] pEm = [——f————=—= [————=—
Ty O 500 ]
B I TIME FROM 000
Z I LAUNCH (MINUTES)
< 3301 i
20— O |
0
I
300
“40
270
|
|
SET AT 10°
60 -
240 : 2 ABOVE HORIZON\E
\RISE AT 10°
210 |- ABOVE HORIZON
-80 *—
180 L~
Figure 3.1-10: Johannesburg Tracking Data;Hour Angle

3-26




DECLINATION RATE (10™3deg/sec)

DECLINATION (DEGREES),

80

60

40

20

-80

-100

BOEING

D2-82709-1

/DECLINATION

500 1000
TIME FROM LAUNCH ( MINUTES)

l: }\ SET AT 10°_.E
' RISE AT 10° (ABOVE

t (ABOVE HORIZON)  HORIZON)

Figure 3.1-11 : Johannesburg Tracking Data;Declination

3-27



BOEING

D2-82709-1

Kioydaled] ysued) |eatdh]  :21-1 "¢ 94nbi4

XONINDI TYNWNLINY O

[£61 ‘0E T1¥dV-
S 1L0lvyzar
HONNAVT

~

NOITIHI¥3d ¥

312115708 32115708
¥IUNIM O O awwns
(Z61 "1€ 100

S esCivyz ar

d3INNODN3

NOI3HIY3d
H1dv3

XONINDI TYNIIA o)

3-28




D2-82709-1

BOEING

NG T
// qo0h R T ..n.ll.u..lym.ul-
. SN e See R o
NG o =0 o =2
= LN = T T oiNed =
. ¢ : e S | e o [ Sl e el T
= = o

HHIE

HIK

A R dE

“EARTH OCCULTATI
77 AT INSERTION

JUN

LAUNCH DATE (1971

/Vw =5/ / :

T

D

|
l’y

i
i

!

H
H4l

._ e
EREE SAEES £R0ts BNt IOARS Pig poge x o2 I XN
: QT ._Hmu.i.].l.
- U= T VITING
= § 8 Fo o= =N
: e sty Spe s Soape oty

MAR
JAN

31va IVAIRRY

AUG

UL

J
-Day Separation

)

3-29

MAY

Trajectory Design Chart for 10

PR

A

MAR

Figure 3.1-13



BOEING

D2-82709-1

figure shows the C3 requirements as a function of the launch date and

arrival date. The declination of the geocentric asymptote is shown in

Figure 3.1-14 over the range of launch dates, April 30 to June 23, 1971.

This determines the daily launch window for a given launch azimuth sector.

Figure 3.1-15 shows the 03 that is necessary to depart the Earth and o
establish the Mars transit trajectory for the various launch and arrival

dates under consideration. The launch period is indicated by the

boundaries of the curve. The maximum C, allowable is 18 km2/se02, which

is the limit for the latest launch date.

The Earth cone and clock angles for the example trajectory set are shown
in Figures 3.1-16 and 3.1-17. There is a maximum variation in the cone
angle of 85 degrees, which occurs the first few days after departure.
The clock angles for each trajectory have approximately the same limits. ®
The communication distance as a function of time from launch is shown in
Figure 3.1-18. The communication distance at arrival will vary from

6
106 X 106 to 122 X 10 kilometers.

3.,1.3 Capsule Separation .

The selection of the capsule separation mode and the time of separation
depends on: (1) maintenance of planetary quarantine, (2) minimum dis-
persions in the landing site, (3) separation velocity requirements, and

(4) communication from the capsule to the spacecraft until landing.
The aiming point for the spacecraft was selected for maintenance of

planetary quarantine. Any small velocity impulse imparted to the space-

craft, in the direction of Mars, will increase the probability of impacting
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the planet over a 50-year period. As a result, none of the separation
maneuvers considered will impart a significant velocity impulse to the
spacecraft. Figure 3.1-19 shows the expected dispersions in the landing-
site location for various times from separation to entry. A slight
minimum in the size of the dispersion ellipse occurs for separation 3
days from entry. However, this minimum is so small that it will not

significantly influence the selection of the separation time.

Within the constraint for maintaining communication between the capsule
and spacecraft through landing, capsule deflection AV is smaller for
earlier separation times as shown in Figure 3.1-20. For example,
separation of the capsule and spacecraft 5 days away from Mars will
require a AV of 35 meters per second for a communication time of 2

hours after entry.

3.1.4 Mars Orbits

3.1.4.1 Mars Orbit Selection Criteria

Only those Mars orbits that satisfy the requirements imposed by the aiming
point selection in Section 2.4 will be used. This region is shown in the
basic aiming point chart of Figure 3.1-21. This chart is a composite
that shows the loci of occultation regions at Mars for a Ve of 3.5
kilometers per second during the launch period. There is an acceptable
region (from & = 5 degrees to © = 145 degrees) which is free from pre-
insertion occultation of Sun, Canopus, and Earth. Mars orbits that
satisfy the aim-point constraints have been evaluated on the basis of

the following criteria: (1) maintenance of planetary quarantine,
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(2) latitude coverage, (3) illumination, (4) communication to Earth,

(5) freedom from solar and Canopus occultation, (6) periapsis altitude
and orbit period, (7) insertion velocity requirements and (8) compat-
ibility with the 1973 mission. The orbit size (periapsis altitude and
period) is considered first. The orbit size is selected on the basis

of planetary quarantine, telemetry time per orbit, absence of long solar
occultation, satisfactory ground coverage and insertion velocity require-
ments. The orbit inclination is selected on the basis of latitude cover-

age, illumination, and occultation.

3.1.4.2 Orbit Size

The orbit size is strongly affected by the planetary quarantine require-
ment. Figure 3.1-22 shows a curve of periapsis altitude, apoapsis
altitude and ballistic coefficient (M/CpA) for a 50-year lifetime. For
the preferred configuration discussed in Section 3.10, tumbling about a
single axis results in a net frontal area of 146 square feet. This gives
the spacecraft an Mﬂ:DA of approximately 0.2 slugs per square foot. For
M/CDA = 0.2 slugs per square foot and example orbit periods of 8 to 24
hours, the allowable range of minimum periapsis altitudes is 17530 to
3600 kilometers. Figure 3.1-22 is based on a nonrotating atmosphere
(NASA-JPL upper limit). The effect of a rotating atmosphere in the
presence of solar perturbations has been investigated. The actual orbit
lifetime will be slightly longer than indicated in Figure 3.1-22 due to
the atmosphere rotation. Figure 3.1-23 shows the allowable range of
periapsis altitudes and orbit periods for the spacecraft's orbit-insertion
propulsion-system capability of 5700 feet per second. The minimum orbit
periapsis altitude is determined by the 50-year orbit lifetime require-

ment. This lower limit for periapsis is shown for various orbit periods.
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Due to guidance dispersions, the mission aim point must be for a higher
periapsis, as discussed in Section 2.4. As an example, Figure 3.1-23
also shows the aimed periapsis required to accommodate a -500 kilometer
dispersion in periapsis, but still obtain a safe orbit using 5700 feet-
per-second. Insertion at periapsis from an approach velocity (Vo ) of

3.5 kilometers per second is assumed.

The upper limit on orbit size depends on the propulsion system capability.
The example limits for 5700 feet per second with a Ve = 3.5 kilometers
per second are also shown. Orbits that satisfy the propulsion limits and
the quarantine constraints fall in the V-shaped region in the upper right
portion of the plot. The dark vertical bands indicate orbit periods,

which will return to the same location every one to 3 months.

3.1.4.3 Orbit Inclination

Figure 3.1-24 shows Sun, Canopus, and Earth occulation regions for various
orbit inclinations, as a function of time from periapsis. This composite
curve shows approach conditions for an April 30 launch date and a

June 8 launch date. These are the dates which are at the limits of the
possible approach vector positions for a constant Ve = 3.5 kilometers
per second trajectory set. The regions of inclinations free from pre-
insertion occulation are also shown by the shading adjacent to the
graph's ordinate. The desired limits of latitude coverage (lOoN to

40°3) prefer an inclination greater than 40 degrees. This chart is for
the first orbit after insertion. Figures 3.,1-25 and 3.1-26 show occul-
tation regions during the 40th and 80th orbits. In these preliminary

design figures the Canopus occultation region assumes sensor failure if

3-44




BOEING

D2-82709-1

INCLINATION (DE GREES)

180 T/ PRE-INSERTION OCCULTATION
NIRRT /
SUN
]60§ LYEARTH 7 \
J : \ \ sun
\
11 |
(N |
i LAUNCH APRIL 30, 1971
Il JUNE 8, 1971
(I |
120 11 CANOPUS /-
11
(I /
Il
100 I
I
1
I
o 1l
I
Il
of
11
e v
I
AN i i
A
: :I | SUN
20 [ ] II l

NOTE: 18-HOUR ORBIT PERIOD
2700-km PERIAPSIS ALTITUDE

0 4 8 12 16 20
TIME IN ORBIT (HOURS)

Figure 3.1-24: Occultation in Orbit — First Orbit (First Day)
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the near limb of Mars comes within 60 degrees of the spacecraft-Canopus
line of sight. Orbits with inclinations between 39 and 42 degrees are

free from Canopus and solar occultation for the first 80 orbits.

3.1.4.4 Periapsis Location

The natural periapsis location of the approach hyperbola is fixed by the
selection of a particular transit trajectory. The orientation of peri-
apsis may be changed by insertion early or late on the ellipse. Figure
3.1-27 shows an example of this variation of the angle between the
approach asymptote and periapsis for tangential insertion into the orbit
about Mars at various approach speeds, Ve. The nominal insertion AV
for this maneuver is 5700 fps. Early orbit insertion will be used to
maintain a constant insertion AV while providing a 10-day separation
between the two spacecraft. The 10-day separation can be maintained if
the second spacecraft uses a trajectory with a constant Ve = 3.25 kilo-
meters per second. The angle between the approach asymptote and periapsis
will change from 68 to 38 degrees. The approach asymptote will rotate
10 degrees in inertial space and the Sun will move 6 degrees., The
resulting illumination angle is decreased by 14 degrees at periapsis for

the second spacecraft.

3.1.4.5 Detailed Mars Orbit Characteristics

Orbit Insertion--Figure 3.1-28 shows the impulsive velocity requirements

for insertion into the Mars orbit. Various periapsis altitudes and orbit
periods are shown for an approach velocity of 3.5 kilometers per second.

Figure 3.1-29 shows the AV requirements adjusted to compensate for
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finite thrusting as a function of the initial thrust-to-weight ratio.
The data are for a gravity-turn trajectory (velocity vector and thrust
vector always aligned) thrusting into an 18-hour period orbit. Gravity
turn trajectories must rely on a complicated guidance control law.
Thrusting in a fixed inertial direction has therefore been considered as
well. Figure 3.1-30 shows the AV losses for this thrusting mode as a
function of the inertial thrust angle for two different thrust-to-weight
ratios. The inertial thrust angle is defined in the diagram on the
figure. For an initial thrust-to-weight ratio of 0.11, thrusting in an
optimized inertially fixed direction will increase the required AV by

only 3 meters per second over that for a gravity-turn trajectory.

The dispersions in the periapsis altitude resulting from errors in the
thrust angle are shown in Figure 3,1-31, The periapsis altitude is
relatively insensitive to small errors in the thrust direction. Figure
3.1-32 shows the dispersions in orbital period that result from an error
in the insertion velocity impulse. For this example, the orbit period

is extremely sensitive to errors in the velocity impulse,

Orbiting Trajectory--To show the orbit trajectory characteristics in

detail, a specific orbit has been selected. This orbit has an incli-
nation of approximately 40° to the Mars equator, a period of 18 hours,
and a periapsis altitude of 2700 kilometers. Figure 3.1-33 shows the
right ascension and declination of the spacecraft during the first and
eightieth orbits. The slight change in position of the orbit is caused

by the regression of the nodal longitude and precession of the argument
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of periapsis due to the oblateness of Mars. Also shown on the figure

are lines of constant illumination angle (measured from the terminator)

for 10 and 50 degrees. The change in position of these lines is due to

the motion of Mars about the Sun., As the mission progresses, the illu-

mination angle at periapsis gets larger. Therefore the periapsis point o
begins as a good place for black-and-white television, and progresses to

a situation favoring color television. Figures 3.1-34 through 3.1-36

show the latitudes and illumination angles for the first, fortieth, and

eightieth orbits. The two curves shown on each figure represent the

maximum variation in the location of the approach asymptote for the Ve =

3.5 kilometers per second trajectory set. These limits occur for launch

on April 30 and June 8., The favorable region of latitudes from +10 to

-40 degrees and illumination angles from 10 to 50 degrees are indicated

by the shaded rectangular area on each chart. For this example, all of ®
the first 80 orbits have favorable illumination angles and latitude cover-

age near periapsis.

Figure 3.1-37 shows a ground track on a mercator projection of Mars for
the first, fortieth, and eightieth orbits. The changes in shape are due [
to the cumulative effects of orbit perturbations from Mars' oblate gravity

field.

Longitude adjustments of these paths can be made at Earth departure by
varying the time of initial encounter at Mars by rl2-hours. Some limit-
ations exist on this adjustment, however, if encounter is to take place

in view of the Goldstone DSN station.
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Orbit Corrections--After the spacecraft has been in orbit for several

days, sufficient information will be available to attempt an adjustment
of the orbit parameters. The most important single parameter to be
controlled is the orbit period. Figure 3,1-31 can be used to determine
the change in orbit period which is available through application of

AV at periapsis. The spacecraft has 100-meters-per-second orbit trim
capability and consequently can increase the orbit period by 10.9 hours

or decrease the period by 5.2 hours, from the example 18-hour orbit.

3.1.5 Capability for 1973 and Subsequent Missions

The compatibility with 1973 orbiter missions is discussed in Section 3.1.2.
For technical detail, design trajectory charts for 1973 are shown in

Figure 3.1-38.

Missions in the 1975 and 1977 opportunities have been examined (in addition
to the 1973 mission) to compare the compatibility with the 1971 mission.
Figure 3.1-39 shows the basic design chart for the 1975 Type I missions.
Curves of constant declination of the geocentric asymptote (DLA) are

shown in red. The constant asymptotic approach speed (Ve ) curves are
shown in blue. For these missions, the minimum C3 is 18.7 km2/sec2. This
is beyond the assumed Saturn IB/Centaur capability and a versatile set

of trajectories would require drastically reduced payloads. Type II
trajectories are therefore more preferable for large payloads. Figure
3.1-40 shows these Type II trajectories with the DLA and Ve curves
superimposed. The DSN tracking limits of +5 degrees are shown by the

red ;haded region. The grey shaded region represents the limiting

booster capability of 18 km2/se02. A wide range of missions are available
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during the opportunity. A launch is possible any day from August 20, 19795,
to October 25, 1975, with arrival from August 4, 1976, through December 22,
1976. If a decision is made to use an orbiting spacecraft in the 1975
mission, the Ve = 3.5-kilometers-per-second line shows sufficient AV
available from the propulsion system to perform orbiter missions similar
to the 1971 mission by launching between August 20, 1975, and October 14,
1975. Figure 3.1-41, the basic design chart for Type I missions in the
1977 era, also indicates excessively high C3 energies are required to

meet the present DLA constraihts with a versatile mission capability.

In Figure 3.1-42 (Type II trajectories for 1977) there is a wide range

of trajectories available for flyby missions launched between September 6,
1977, and at least December 2, 1977. Orbiter missions similar to 1971
could, if desired, be flown in 1977, with launches between September 6,
1977, and November 8, 1977. For completeness, the 1971 trajectory design

chart is presented in Figure 3.1-43.
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3.2 VOYAGER ORBIT-DETERMINATION CAPABILITY

3.2.1 Scope

The results of the orbit-determination accuracy analysis are presented
in this section for the trans-Mars, Mars-approach, and Mars orbit mission

phases.

3.2.2 Description

The trans-Mars trajectory examined is a Type I, with launch on May 14,
1971, and arrival at Mars on December 15, 1971 (a 215 day transit time).
The nominal orbit about Mars has an eccentricity of 0.635, a period of

18 hours, periapsis radius of 6060 kilometers, inclination to Mars equa-
tor of 34°, and inclination to plane normal to the Earth-Mars line of 78°.
The details of the analysis are presented in Volume B, Section 3.1l. The
orbit-determination capability during the mission depends on the orbit
parameter values and on the sequence of orbit correction maneuvers. The

results presented are for specific nominal orbits.

3.2.2.1 Midcourse and Mars-Approach Orbit Determination
The orbit-determination accuracy during the midcourse, or trans-Mars, and
Mars-approach mission phases is summarized in Table 3.2-1 for the nominal

maneuver timing sequence, 5, 25, and 175 days from launch.

3e2.2.2 Mars Orbit Determination
The dominant error in the initial determination of the orbit about Mars
is in the position of the node in the plane normal to the Earth-Mars line.

With DSN, it is determined to 0.15 degrees in 2 days and 0.0% degrees
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TABLE 3.2-1

ORBIT-DETERMINATION UNCERTAINTIES

Time (Days
From Launch)

3 0 RSS Position
Uncertainty (km)

30 RSS Velocity
Uncertainty (m/sec)

— — - — — —— —

Time to
Encounter
(Hours)

20
10
5

RELATIVE TO EARTH

e R —

0.008
0.004

R A O N 0 R
- T 7|7 .00 T

0.003
0.002
0.002
0.002
0.003

B B O N 0 R

0.01
0.045
0.01
0.02

RELATIVE TO MARS

30 Error in Estimating
Periapsis Radius (km)

300
270
120
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in 3 days. The position error due to a node error of 0.03 degrees is 3

kilometers at apoapsis.

The errors in determination of all other orbit parameters result in pos-
ition errors of 0.5 kilometer or less in one orbital period using DSN.
The dominant source of error is the accumulated effect of system para-

meters that are omitted or imperfectly represented in the system model.
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3.3 VOYAGER FLIGHT SPACECRAFT COMPONENTS DESIGN PARAMETERS

The following paragraphs define the terminology and use of the Spacecraft

Components Design Parameters Sheets (SCDPS) in Table 3.3-1.

3.3.1 Scope

3.3.1.1 The SCDPS will serve as the controlling specification for the
maximum weight, power, volume, and thermal operating ranges, as well as
reliability of all the Model 945-6026 spacecraft subassembly components
contained in the following subsystems:

Spacecraft Telecommunications

Attitude Reference Subsystem

Autopilot Subsystem

Reaction Control Subsystem

Central Computer and Sequenceer Subsystem

Electrical Power Subsystem

Spacecraft Structure Subsystem

Spacecraft Mechanisms Subsystem

Temperature Control Subsystem

Pyrotechnic Subsystem

Installation Cables and Tubing

Midcourse Correction Propulsion Subsystem

Orbit Insertion Propulsion Subsystem

Science Payload Instrumentation (GFE)

Science Payload Data Automation System (GFE)
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3.3.2 Applicable Document

MC-4-120-E - Functional Specification, Mariner C Flight Equipment

(Spacecraft Components Design Parameters).

3.3.3 Subsystem Reference Numbers

Subsystem reference numbers are assigned to various spacecraft sub-
systems for identification. The numbers are identical to those shown on

the equipment drawing tree in Figure 3.4-1.

3.3.4 Design Parameters

The SCDPS lists the number required, weight, volume, power, thermal con-
ditions, reliability, make or buy of all appliable spacecraft components,
and the status as to whether the parts within a subassembly or component

are on the Voyager approved parts list.

3.3.5 Explanation of the Symbols and Nomenclature Used on the SCDPS

3.3.5.1 Assembly and Subassembly--Column 1
Items listed are subassemblies and components. The subassembly and com-
ponent names appearing in this column will appear in all applicable

documents, equipment lists, and drawing trees.

3.3.5.2 Number Required--Column 2
The number specified in this column defines the quantity required per

spacecraft.
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0.1 Sec

Pressurization System=-Plumbing 4 (16.0) 40 120
Squib Valve, NC 4 4.0 2.0
Squib Valve, NC, Dual ! 4.2 0.8 25 | [&>
Squib Valve, NO 4 4.3 3.2
Solenoid Valve, NO 1 4.4 0.8
Filter 3 4.5 1.0
Relief Valve, Pressure 1 4.6 0.5
Regulator 2 4.7 3.0 VMw Watt 0.1 Sec. One Shot
Valve & Cap, Fill & Test 3 .4.8 0.4
Lines, Connectors & Clamps - 4.9 4.3 v_:n_cmmm in Reaction Control Subsystem 40 120
Pressurization System Gas Supply W
SUBSYSTEM TOTALS 508.4
ORBIT INSERTION PROPULSION 1 1.2.2.2 2686 | 2686 40 30 90 ] L9995
Rocket Engine, Solid-Inserts 1 1.2.2.21 (272.0) N/A
Motor Case 1 1.2.2.2.11 71.0 40,000 130
Motor Internal Insulation, Unexpendable 1 1.2.2.2.1.2 32.0 5800
Motor Internal Insulation Expendable 1 1.2.2.2.1.3 45.0 5800
Motor Liner 1 1.2.2.2.1.4 3.0 5800
Motor Nozzle, Unexpendable 1 1.2.2.2.1.5 85.0
Motor Nozzle, Expendable V] 1.2.2.20.6 2.0
Motor Igniter and S & A V| 12,2207 4.0 90
Motor Igniter Prop. 1 1.2.2.2.1.8 2.0 90
Motor Skirt V| 1.2.2.20009 8.0 20
Motor Fastener, Seals, etc. 1.2.2.2.1.10 2.0 220
Thrust Vector Control Unit 1 1.2.2,2.2 (108) 40 30 90
Torus Tank Welded Assy . 1] 1.2.2.2.20 23.0 130 90
Bladder Instollation 1 1.2.2.2.2.2 2.0 130 90
Pressure Plote Assembly 1 1.2.2.2.2.3 1.0 130 90
Injector Valve Units 4 1.2.2.2.2.4 10.0 130 90
Servo Valves 4 1.2.2.2.2.5 2.0 130 90
Burst Discs 4] 1.2.2.2.2.6 0.8 90 50
Filters, Freon 4 1.2.2,2.2.7 0.4 90 50
Clamps, Injector~to-Tank 4 1.2.2.2.2.8 0.8 90 50
Hydraulic Installation 1 1.2.2.2.2.9 4.7 90 50
Valve and Cap Assembly,
Freon, Fill and Test t] 1.2.2.2.2.10 0.3 90 50
Valve, N2, Squib Oper.,
NC, Duol v | 12,222 0.8 90 50
Valve N2, Squib Oper.,
NO, Dual 1 1.2.2,2.2.12 0.8 90 50
Lines, Connector, and
Clamps - Ny 1.2.2.2.2.13 0.4 %0 50
Freon-Residual 5.0
Freon - Usable 1.2.2.2.2.14 56.0 %0 50
Solid Propellant 1.2.2.2.3 (23060, 20 50
SUBSYSTEM TOTALS 2686.0
SCIENCE PAYLOAD 1.2.3.1 195 195 h GFE 6726
INSTRUMENTATION (GFE) 14 158 10.0 -94 275
TV Camera Assemblies (2) 2 1.2.3.1.1 14 131 3.6 +22 176
Mars Scanner 1 1.2.3.1.2 -40 -4 3.6 -58 158
Infrared Spectrometer 1 1.2.3.1.3 -110 50 3.6 -110 140
Dual Frequency Radio Experiment 1 1.2.3.1.4 14 131 3.6 -58 176
Ultraviolet Spectrometer 1 1.2.3.1.5 Y_oo 14 104 3.6 -22 140
MarsRF Noise Detector 1 1.2.3.1.6 14 131 3.6 -58 176
Helium Vector Magnetometer 1 1.2.3.1.7 14 131 3.6 -58 176
Plasma Probe Instrument 1 1.2.3.1.8 14 131 3.6 -58 176
Trapped Radiation Detector 1 1.2.3.1.9 14 131 3.6 -22 140
Micrometeroid Detector 1] 1.2.3.1.10 14 131 3.6 -94 275
lonization Chamber Instrument 1] 1.2.3.0.0 — -58 193 3.6 -58 508
SUBSYSTEM TOTALS 195.0 J
SCIENCE PAYLOAD DATA 1.2.3.2 55 | 55
Automation System (GFE) 14 131 3.6 -58 176
Data Automation Equipment 1.2.3.2.1 14 131 3.6 -58 | 176
SUBSYSTEM TOTALS 55.0

g5 (¢



VWIS VPV IV WL e

TEMPERATURE CONTROL SUBSYSTEM 111.2.1.9 107 107.3 23 91 Unreg. D.C. L9960
Thermal Control--Propulsion Instl 1.2.1.9.1 (71.4)
Heat Shield--Solid-Motor Nozzle and 1.2.1.9.1.1 32.1 -282 1000 600
Bus Forward-Base Area
Insulation Blanket--Solid Motor Case & 1 ]11.2.1.9.1.2 8.3 ~200 300 N.A.
Freon System
Heat Shield--Midcourse Rocket Eng. 4 }1.2.1.9.1.3 20.4 -300 250 20
Thermal Shroud--Aft Side Area 1]11.2.1.9.1.4 3.8 -300 250 20
Thermal Shroud--Aft Base Area 1 11.2.1.9.1.5 4.4 -300 250 20
Thermal Shroud--Forward-Base Area, T 11.2.1.9.1.6 1.4 -200 200 NOM
Jettisonable
Louvers-=-Propulsion Module 1.2.1.9.1.7 1.0 =300 300 N.A.
Thermal Control (Bus) 1.2.1.9.2 (35.9)
Louvers--Body Mounted 12 J1.2.1.9.2.1 17.5 -300 300 N.A,
Louvers--Scan Platform 1 11.2.1.9.2.2 3.5 -300 300 N.A.
Insulation--Body 1.2.1.9.2.3 3.8 -300 250 20
Insulation-~Scan Platform 1.2.1.9.2.4 0.8 -300 250 20
Thermal Coatings 1.2,1.9.2.5 2.3 -300 250 20
Temp Sensors 41 11.2.1.9.2.6 1.0 -300 300 N/C
Solar Shielding 1]1.2.1.9.2.7 2.0 -300 300 20
Heaters & Wiring 27 |1.2.1.9.2.8 |__5.0 -300 300 N.A,
SUBSYSTEM TOTALS 107.3
PYROTECHNIC SUBSYSTEM 1 }1.2.1.10 v v 2.70 |2520 1.0 50 Milsec O/C Battery 17 120 68
v NOTE: The weight, volume and reliability of this subsystem are
included in the Central Computer and Sequencer Subsystem
and in the pyrotechnic operated subsystem components
INSTL CABLES & TUBING 1.2.1.10 110 | 110.0 . 9999
Subsystem Cab 3@\10-:@& Instl 1.2.1.11.1 ~200 250 N/C
Spacecraft Bus
Subsystem Cabling/Harness Inst. 1.2.1.11.2 100 -200 250 N/C
Spacecraft Propulsion
Subsystem Cabling/Harness Inst. 1.2.1.11.3 0. __ ~200 250 N/C
SUBSYSTEM TOTALS 110.0
MIDCOURSE CORRECTION PROPULSION | 1 1.2.2.1 508 | 508.4 See i 4,320 Vol A .9973
Rocket-Engine System 1 1.2.2.1.1 (22.4) ee Figure 4.3-9 Vo
Rocket Engine 4 11.2.2.1.1.1 10.0 40 1800 40 120
Jet Vane Assembly 4 | 1.2.2.1.1.2 10.4 24 -65 +310 -65 | +165
Pressure Transducers 4 | 1.2.2.1.1.3 2.0 «65 +165 -65 | +165
Propeliant System~-inerts 1 1.2.2.1.2 (75)
Spherical Tank Welded Assembly 2 1.2.2.1.2.1 26.0 13,050
Bladder Installation 2 |1.2.2.1.2.2 4.0
Standpipe Installation 2 | 1.2.2.1.2.3 6.0
Squib Valve, Normal Closed (NC) 3 1.2.2.1.2.4 2.7 40 120
Squib Valve, NC, Dual 1 1.2.2.1.2.5 1.5 40 120
Solenoid Valve, NC 4 ] 1.2.2.1.2.6 1.8 16 | [&
Squib Valve, Normally Open (NO) 3] 1.2.2.1.2.7 2.7
Squib Valve, NO, Dual 1 1.2,2.1.2.8 1.5
Solenoid Valve, NO 1 1.2.2.1.2.9 0.9 25 v
Filter 2 | 1.2.2.1.2.10 1.6
Relief Valve, Thermal 1 1.2,2.1.2.1 0.4
Valve & Cap, Fill & Test 3 1.2,2.1.2.12 0.9
Feed Lines, Connectors, & Clamps 1.2.2.1.2.13 9.4
Pressure Transducer 1 1.2.2.1.2.14 0.5
Temperature Transducer 2 ] 1.2.2.1.2.15 0.1
Residual Hydrazine--Allowances 1.2.2.1.2.16 15.0
1.2.2.1.3 (395.0) 40 120

Exp. Hydrazine-Usable

TV

Duty Cycle 400 Sec. Max

20-150 Sec. Per Shot




NE

Panel Deployed Latch e |1.2.1.6.1.9 8.2 | Bridge a 1
Photovoltaic Cell Assy 48,708 1.2.1.6.1.10 92.0 None
Battery Instl. Ea. 8 x 16 x 6 in. 1.2.1.6.2 (123.0) 2100/7
Power Conditioning Equipment 1.2.1.6.3 (50.0) 120/Ea. 3/Ea. |26/Ea. 40 10 40 77
Battery Charger & Failure Sensor 3 {1.2.1.6.3.1 9.0 108/Ea. 6.3/Ea. Unreg. Bus 14 167 14 | 167
Booster Converter 1 }1.2.1.6.3.2 1.5 72 7 Jnreg. Bus 14 167 14 167
& Share Sensor
DC-DC Regulator 4 {1.2.1.6.3.3 25.6 144/Ea. . 14 | 167
Power Switch & Logic 1 ]1.2.1.6.3.4 3.2 108 628 141l n 33 %HN Num K “Mw 14 | 167
Synchronizer 1 ]1.2.1.6.3.5 1.0 36 1.5 2.0 1.0 1.5 Clock Pulse 14 167 14 167
Reg. Bus
2.4cke, 1 ¢/ Inverter 2 |1.2.1.6.3.7 4.0 72/Ea. [4.0/Ea J83.67]4.0/Ea 8. 67/Ea. Reg. Bus 14 167 14 | 167
AC Failure Sense 1 [1.2.1.6.3.8 1.7 108 NA |NA | 1.0 |5 wﬁwmw.cws 14 167 14 1167
DC Failure Sense 2 [1.2.1.6.3.9  |e5-688 _4.0 108/€a. | NA | NA [1.0/Ea f1.5/Eq. Unreg. Bus 14 167 14 1167
SUBSYSTEM TOTALS 457.0 Reg. Bus
SPACECRAFT STRUCTURE SUBSYSTEM 1.2.1.7 498 (497.8) . ml 9999
Equipment Support Structure 1.2.1.7.1 373.2
Cylindrical shell 1.2.1.7.1.1 (68.7) =50 200 10
Vertical truss 1.2.1.7.1.2 {20.2) -50 200
Upper support ring 1.2.1.7.1.3 (15.3) -50 200
Lower support ring 1.2.1.7.1.4 (46.1) =50 200
Lower support truss 1.2.1.7.1.5 (101.3) -50 200 10
Secondary support structure 1.2.1.7.1.6 (121.6)
High=-gain antenna supports 1.2.1.1.7.1.6.1 2.0 -300 200 10
Low-gain antenna supports 1.2.1.7.1.6.2 5.9
VHF antenna supports 1.2.1.7.1.6.3 5.9
Science boom 1.2.1.7.1.6.4 23.1
Science boom supports 1.2.1.7.1.6.5 1.7
Scan platform 1.2.1.7.1.6.6 24.0
Scan platform supports 1.2.1.7.1.6.7 8.7
Solar panel attach structure 1.2.1.7.1.6.8 8.0 =300 200 10
Equipment attach structure 1.2.1.7.1.6.9 12.0 -50 200 10
Meteoroid shielding 1.2.1.7.1.6.10, 20.3 -300 200 10
Propulsion/Reaction Control
Support Structure 1.2.1.7.2 124.6
Motor support assy 1.2.1.7.2.1 30.5 -50 200 10
Tank support assy 1.2.1.7.2.2 33.1
Engine support assy 1.2.1.7.2.3 7.2
Misc supports & fasteners 1.2.1,7.2.4 4.8 -50 200 10
Meteoroid shielding 1.2.1.7.2.5 49.0 -300 200
SUBSYSTEM TOTALS 497.0
SPACECRAFT MECHANISMS SUBSYSTEM 1.2.1.8 59 58,9 M ].9988
High-gain Antenna Mech Inst| 1.2.1.8.1 (31.5) -70 167 20
Boost supports 1.2.1.8.1.1 1.4
Deployment linkage 1.2.1.8.1.2 19.9
Deploy pin pullers 1.2.1.8.1.3 0.4
Dish pin pullers 1.2.1.8.1.4 0.3
Pointing mechanisms 1.2.1.8.1.5 9.5
Low-gain Antenna Mech Instl 1.2.1.8.2 2.9 -70 167 20
Deploy pin puller 1.2.1.8.2.1 0.1 v
Deploy Mechansims 1.2.1.8.2.2 2.5
Locking Mechansims 1.2.1.8.2.3 0.3
VHF Antenna Mechanism Instl 1.2.1.8.3 4.4) -70 167 20
Deploy pin puller 1.2.1.8.3.1 0.2 v
Locking Mechanisms 1.2.1.8.3.3 4.2
Scan Platform Mechanism Instl 1.2.1.8.4 (11.5) -70 167 20
Boost supports 1.2.1.8.4.1 1.8
Pointing mechanism 1.2.1.8.4.2 8.9
Cover actuation mechanism 1.2,1.8.4.3 0.8
Science Boom Mechanism Instl 1.2.1.8.5 (5.4) -70 167 20
Deploy pin pullers 1.2.1.8.5.1 0.2
Deploy mechansim 1.2.1.8.5.2 4.0 NOTE: Pin puller power is supplied
Locking mechanisms 1.2.1.8.5.3 1.2 v m_‘oavvv\_,oqhvwrln mcwmwwma
monmmlo_ommno_ Barrier Mechanism |nstl 1.2.1.8.6 {3.2) -70 167 20
Pin pullers 1.2.1.8.6.1 0.4 v
Separation 1.2.1.8.6.2 2.8




R Infernai Labhing L
SUBSYSTEM TOTALS 207.0 !
ATTITUDE REFERENCE SUBSYSTEM 1 1.2.1.2 51 50.8 3872 133.5 33.5| 33.5 33.5 100% 14 2400 B . 9969
Inertial Reference Unit 1 ]1.2.1.2.0 (22.4) 29.3 31.8f 29.3 | 31.8 +35vd.c -65 165 -80 165
Gyro (G10) 3 |1.2.0.2000 8.0 29.3 }31.8] 290.3 | 31.8 35 vd.c 178 182
Gyro Electronics 1 ]rza.z0.2 9.9 .3 .50 .3 .5 Plus 24 ke
Accelerometer 2 121213 4.5 | 1 | 1 60 200
) i -150 300
Sun Sensor - Primary 2 ]1.2.1.2.2 (2.5) B N . . Cont. 35v.dc +3 149 30 _20 160
c Secondary ~10 185
anopus Sensor 2 {2023 13.5 5 5 5
Attitude Ref. Subs Packaging M_o.ovv 5 Cont. 35vd.c 0 104 - -30 125
Remote Sun Sensors 3112124 (1.5) 80
v 1-1/2 Hours {Acquisition)
v Several Minutes During Injection ——
SUBSYSTEM TOTALS 508
AUTOPILOT SUBSYSTEM 1 1.2.1.3 1 ]11.0 640 7 79 7.5 5.0 10 min. 35v dc 35 95 167 B .9998
Summing Amplifier 3 11.2.1.31
Derived Rate Networks 3 ]1.2.1.3.2
Valve Drivers (RC) 16 11.2.1.3.3
Driver Amplifiers (JV) 16 |1.2.1.3.4
Valve Drivers (S1) 4 11.2,1.3.5
Control Logic and Switching 1 ]1.2.1.3.6
Power Supply 1 ]1.2.1.3.7 —
SUBSYSTEM TOTALS 1.0
REACTION CONTROL SUBSYSTEM 1.2.1.4.1 212 (212) M L9996
N2 Tanks 4 |1.2.1.4.2 128.0 8660 30 100 30 110
Pressure Regulator 2 [1.2.1.4.3 4.0 -65 165 -65 165
Valve--Sol. Oper. latc 2 |1.2.1.4.4 3.6 C.C.8&$ -65 165 -65 165
Valve & Cap--Fill 2 |1.2.1.4.5 0.3 ~65 165 -65 165
Thruster Units 4 1.2.1.4.6 9.6 Autopilot =65 165 -65 165
Gas Lines, Connectors, Clamps 1.2.1.4.7 4.0
Pressure Transducers 2 ]1.2.1.4,8 1.0
Temperature Transducers 4 |1.2.1.4.9 0.2
Quad Check Valve 2 |1.2.1.4000 0.6
Filter 2 120040 0.7
N2 Propellant - 60 -90 165 -90 165
SUBSYSTEM TOTALS 212.0
CENTRAL COMPUTER & SEQUENCER 1.2.1.5 s8.0[ 58 M 9945
Control Assembly T J.2.1.5.0 29} 1550 35 35 35 35 1.0 1.2.1.6 32 150 - 32 150
8x8x24
Logic Card {Integrated Circuit) 21 11.2.1.5.1.1 13
Subassembly
Memory Subassembly 2 4
Oscillator Subassembly 2 11.2.1.5.1.4 1
Cabling/Wiring 1.2.1.5.1.6 6.0
Structure 1.2.1.5.1.7 5
Switching Assembly 1 h2as2 29) 1oso | 5.5 k780 | 5.5 feo 50 ms 2 150 - 2 | 150
108 Squib 8x8x16 7
Cordwood Module 9 f1.2.1.5.2.1 Orivers Sauib Firing
8 Valve
Drivers § _y5
15 Relay
Relay Subassembly b .2.1.5.2.2 Drivers } 4
{2 Relays)
Structure 1.2.1.5.2.3 5
Cabling/Wiring 1.2.1.5.2.4 8
SUBSYSTEM TOTALS 58.0 2600
ELECTRICAL POWER SUBSYSTEM 1.2.1.6 457 | (457.0) B | .9923
Solar Panel Array Instl. P26 (284.0) NA NA =275 175
Solar Panel Frame 3 .2.1.6.1.2 53.8
Substrate Assembly 12 }11.2.1.6.1.3 69.5
Fasteners 0.5
Solar Panel Strut 6 1.2.1.6.1.4 22.5
Panel Deploy Devices & Hnge. 6 (1.2.1.6.1.5 vmu.o
DC Motor 6 11.2.1.6.1.6 10/Mot | 75/M)7.25/M) 75/M 2 sec. Battery NA | Na
Panel Boost Latch 12 h12asa7 v_u.o o
Gtk Mmcihla Bridnel . 1 hisrana _ - _ 20/ lso/sh NA | A 100 | Savibkiving | o
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Spacecraft Components Desian Parameters Sheet (SCDPS)

Table 3.3-1

g -] &l .5 FLIGHT APPROVED rzmwz&k N wh
e o ~dlEd |azlnz ELECTRICAL POWER DISSIPATION & SOURCES THERMAL OPERATING OPERATING | 2 sl o3
I 7 o L2 |88 = CONDITIONS o cZ| <o
g \TEM g |e=|c2 [Hels 2 conoimiong 5 52 €
ASSEMBLY AND SUBASSEMBLY e S| NUMBER w z S5 m 31 .w.. m z INPUT DISSIPATED PEAK P MARY MIN. wax, T Lo Tl 2 12331 99
=X 8z |z25|3s |29]x0 WATTS | WATTS POWER | POWER TEMP temp | el Eme| e | 3 [ SEE] 32
zu <z 03 1 <>410 > e Treaxl ave.| reax oury SOURCE °F. °F. or/min | FF -
COLUMN NUMBER v |2 3 4 5 6 7 8 o Ll n 12 13 14 15 16 17 18 [ 19 [2o] 2 22
TELECOMMUNICATI ONS 207.0Y 207 .0 B 8416
Radio Subsystem
87.2 37.0 36.0 | Launch
Receiver & Exciter Assy (36.8) 16x8x8 | 20.0 20.0 |cCruise +35¢1.75vd. 35 95 2° -13] 167
Receivers 2 8.5 5.6 5.6
Command Detector 2 6.0 1.5 1.5
Ranging 2 1.0 1.0 1.0 Up to
L+20 days
Exciter 2 J1.2.1.1.1.1.4 2.8 5.4 5.2
Launch Xmitter LI I PR I I 2.2 20.0 19.0 Launch
Redundancy Control & Logic LI 20 P I ) 4.5 0.6 0.6
Preamp 1 11.2.1.1.1.1.7 1.0 0.25 0.25 86 +158
Convertor-Exciter No. 1 1 }1.2.1.1.1.1.8 1.3 1.1 1.1 95 +167
Conv. =Launch Tx & Ex No. 2 1 2.0y 1.3 1.1 1.1 Cruise
4.3 4.3 Launch -
Conv. -Rec./Com. /Rang. 2 {1.2.1 = 2.7 1.9 1.9 a
Conv.-Rec. Control Logic Vs 2 1.3 1.7 1.7 Z
Internal Cabling - 11.20 ANA 4.2 <
RF PA Assembly 1.2.1. o (50.4) 16x8x26 | 0.2 0.2 Launch +35%1. 75vd. ¢ e
- 150.2 150.2 Cruise ) @
RF - Structure P2 3 3.0 35 13 2° -3 | +185 <
Diplexer 1 {1.2.1 AHn 1.5 k-
4-Port Circulator 3 |1.2.1 o 8.2 0.18 0.18 4]
Preselector 2 fr.2.1 ] 1.5 z
PA --Structure 1 i.2. m 4.0 W
TWTA 2 1.2, 2 18.0 150 100 +185 a
tsolator 3 .z . 4.6 85 +185 z
Band Pass Filter 3 |2 z 3.0 | & 2
Band Rejection Filter [l LR =1 0.3 o mw
Hybrid 1|2, o .o | 3 O
Circulator Sw. (3-Port) 1 2. O o8 | ¢ 0.03 0.03 0
Internal Cabling - 1.2 %] 4.5 ® =
Telemetry Subsystem 1.2, b= 58.0 < o
Planetary Science Tape Recorder 1 }1.2. o) (32.0) w 16x8x28 1.2 1.2 Liftoff +35°1, 75vd. ¢ -
Assembly L M 25 25 Orbital a
Tope Recorders 2 fr.2.1.1.2.1.1 w 30.0 = 25 Redprd 25 35 86 2° -13 +122 w
] g 2.4 Pldy- 2.4 Orbital <
< < 1.2 bafk 1.2 Liftoff w
Internal Cabling w 2.0 > °
Telemetry Processor Assembly o (26.0) = 16x8x7 6.0 6.0 35 95 2° =13 | +167 =
Engineering Core Memory 1 . = 5.0 w 0.5 0.5 Launch z
b4 3 Cruise Q
Capsule Core Memory 1 1.2.1.1.2.2.2 Q 5.0 (V] 0.5 0.5 2
Eng. Multiplexer/Encoder/Mod. T §r.2.1.1.2.2.3 .N 11.5 w 3.3 3.3 m
Converter 1 ]1.2.1.1.2.2.4 2 1.5 | 2 1.7 1.7 o)
Internal Cabling 1.2.1.1.2.2.5 ] 3.0 | o <
z ] =
Spacecraft Antenna Subsystem 1 - 54.3 >
Low-Gain Antenna 1 T6.4
High-Gain Antenna 1 38 1.0 {120.0f 1.0 |120.0 | Standby
6.0 [120.0] 6.0 |120.0 | Maneuvers
Shroud Antenna 1 2.0
Launch/Acquisition Antenna 1 1.5
Relay Antenna (VHF) 1 6.4
Relay Radio Subsystem 1.2.1.1.4 7.5 8x8x9 5.2 5.2 Encounter |+35+l.75vd.c 35 95 2° -13 | +167
Receiver 1 ]1.2.1.1.4.0 3.0 2.10 2.10
T/M Detector 1 §1.2.1.1.4.2 2.5 1.53 1.53
Converter 1 §1.2.1.1.4.3 |} B 1.0 1.57 1.57
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Table 3.3-2: SUMMARY TOTAL

Summary Weights
SUBSYSTEM Science | S/C Propul.| Reliability
Payload | Bus Inst.
Spacecraft Telecommunications 227 0.8416
Attitude Reference
Subsystem 51 0.9969
Autopilot Subsystem 11 0.9999
Reaction Control Subsystem 212 0.9996
Central Computer and
Sequencer Subsystem 58 0.9945
Electrical Power Subsystem 457 0.9923
Spacecraft Structure .
Subsystem 373 125 0.9999
Spacecraft Mechanisms
Subsystem 59 0.9988
Temperature Control
Subsystems 36 71 0.9960
Reliability
Pyrotechnic Subsystem - - included in
CC&S
Installation Cables 100 10 0.9999
Midcourse Correction
Propulsion Subsystem 508
Orbit Injection
Propulsion Subsystem 2686 0.9968
Science Payload SC/PL
Instrumentation 195 Planetary
exper.
Science Payload Data only =
Automation System (GFE) 55 6726
Contingency 166 | *100
Spacecraft System Total 250 1750 | 3500 0.552

*Including 38-pound allowance for possible
change from fiberglass to Ti solid motor case
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3.3.5.3 Item Number--Column 3

This column indicates a specific number assigned to the subassembly and
components as established by the drawing tree shown in Figure 3.4-1. This
number serves as a positive identification until engineering drawing

numbers become available.

3.3.5.4 Drawing Number--Column 4
Numbers shown are the numbers assigned to Engineering drawings, which

define the installation, subassembly, or component.

3.3.5.5 Weight--Columns 5 and 6

Weight shown in Column 5 represents allocated weights for the total number
of subassemblies or components making up the spacecraft configuration.
Allocated weights establish the maximum permissible values. Weights shown
in Column 6 represent current weights for the subassemblies and components

on the date indicated in the upper right hand corner of the SCDPS.

3.3.5.6 Volumne--Columns 7 and 8
Volumes shown in Column 7 represent allocated volume for subassemblies
or components making up the spacecraft configuration. Allocated volume

establishes the maximum permissible values.

Weight shown in Column 8 represents current volume for the subassemblies
and components on the date indicated in the upper right hand corner of

the SCDPS.
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3.3.5.7 Electrical Power, Dissipation and Sources--Columns 9 through 14
Input Power: Columns 9 and 10 represent actual input watts, average and

peak, respectively, during operation.

Power Dissipation: Column 11 and 12 represent actual dissipated watts,

average and peak, respectively, during operation.

Duty Cycle: Column 13 represents peak power duty cycle during operating

time of each subassembly and component.

Primary Power Source: Column 14 lists the power source for each sub-

assembly.

3.3.5.8 Thermal Operating Conditions--Columns 15 through 17
Columns 15 and 16 represent the minimum and maximum subassembly or com-
ponent temperature of degrees Fahrenheit that the subassembly or compo-

nent is designed to withstand under normal operating conditions.

Column 17 lists the maximum rate of temperature change in degrees

Fahrenheit per minute under normal operating conditions.

3.3.5.9 Thermal Nonoperating Conditions--Columns 18 and 19
Columns 18 and 19 represent the minimum and maximum temperature in degrees
Fahrenheit that the subassembly or component is required to withstand when

in a nonoperating condition.
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3.3.5.10 Make or Buy--Column 20
Column 20 defines whether the equipment is purchased or Boeing-made.

The Government Furnished Equipment (GFE) associated with the

science payload is indicated on Table 3.3-1.

3.3.5.11 Reliability--Column 21

Column 21 defines the numerical reliability value assigned to the sub-

assembly or component,

3.3.5.12 Voyager Approved Parts List--Column 22

A "yes" in this column indicates that the subassembly or component con-
tains parts that appear in the Voyager Approved Parts List (VAPL). A
"no" in this column indicates that the subassembly or component contains

a part or parts not appearing in the VAPL., Further discussion of the

VAPL can be found in Section 5.9.1.6.
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3.4 VOYAGER EQUIPMENT ELEMENTS AND DOCUMENTATION IDENTIFICATION

3.4.1 Scope

This subsection describes the Boeing method for identifying Voyager
Spacecraft Systems equipment elements and related documentation,

Equipment elements consist of hardware items (assemblies, subassem-
blies, parts, etc.) which, when properly assembled, will constitute
the contractual end item; related documentation consists of specifi-

cations, drawings, documents, etc., which define the hardware items.

3.4.2 Applicable Documents

NPC 500-1, NASA, "Configuration Management Manual," May 18,

1964.

Document D-4900, Boeing, "Drafting Procedures Manual."

3.4.3 Requirements

The Standard Configuration Identification Numbering System, defined
in Exhibit X of NPC 500-1 and interpreted in the Boeing Drafting
Procedures Manual, will be employed by the Boeing Voyager program.

This system recognizes the following classifications:

1) Contract end item (CEI) numbers;

2) Specification identification numbers;
3) Drawing and part numbers;

4) Change identification numbers;
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5) Serial numbers;

6) Code identification numbers.

NPC 500-1, Exhibit X specifies that all identifying numbers shall be
assigned and controlled by the contractor in accordance with certain
minimum standards defined in NPC 500-1; the numbering system reflected

in subsequent paragraphs has been designed to fulfill these requirements.

The identifying numbers will be affixed on the equipment elements and
related documentation in accordance with the Boeing "Drafting Procedures

Manual." Identification number formats will be as described in the

following paragraphs.

3.4,3.1 CEI Numbers

The CEI number is a permanent Boeing number assigned to identify all

units comprising the contract end-item family (type, model, series), and

is the basic (root) number reflected in the CEI detail specification number,

the CEI top drawing number, and the CEI top part number.

The CEI number is composed of seven digits as shown in the following exam-

ple.

A50034?

Suffix Code -- added by the customer and denoting

baseline approval status

Root Number -- A50000 through A59999 assigned to the

Voyager program
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3.4.3.2 Specification Identification Number
The specification identification number is composed of 12 digits as shown

in the following example.

CB22A50034A

uru___

Source Code -- used only when two or more sources are
available

Suffix Code -- added by the customer and denoting

specification approval status

Drawing Number =-- note relationship to CEI number

Specification Prefix -- as defined in NCP 50C-1,

Exhibit X

3.4.3.3 Top Drawing and Part Numbers
The top drawing number is composed of eight digits as shown in the foll-

owing example.

@§é50034

L Root number -- AS0000 through A59999 assigned to the

Voyager program (note relationship to'CEI number)

Drawing Size Code

Boeing Division Code

The top drawing part numbers are composed of 15 digits as shown in the

following example.
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22A50034~101-11

\[:————-Configuration Number--assigned sequentially starting
with 1l1.

Family Designation Code--assigned sequentially start-
ing with 10l.

Basic Drawing Number

3.4.3.4 Subordinate Drawing and Part Numbers

Subordinate drawing and part numbers are constructed as shown in section
3.4.3.3, except that the drawing root number will not be significant to
the CEI number. A subordinate drawing (and part number) is shown in the
following example.

\25A51234-101-11

T—  Ppart Family Designation Code and Configuration Number
(see section 3.4.3.3).

Basic Drawing Number (see section 3.4.3.3)

3.4.3.5 Change Identification Numbers

Change identification numbers will be assigned to all Class I and Class Il
change packages. These change packages are defined in ANA Bulletin 445

and referenced in NPC 500-1. Class I changes will be identified by
engineering change proposal (ECP) numbers assigned sequentially; Class II
changes will be identified by production revision request (PRR) numbers
assigned sequentially. Both change classification numbers shall be identi-

fied on the applicable drawings.

3.4.3.6 Serial Numbers

All drawings will specify serial numbering requirements when applicable.
Serial numbers shall be issued for:

1) All contract end items (CEI's)'
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2) All critical components of CEI's;

3) Certain items of equipment below the CEI level, provided that these

items are time/cycle sensitive, or that component operational data

notices have been issued against these items.

Each of the above categories will have sequentially assigned, seven-digit
serial numbers starting with 0000001. Once issued, the numbers will not

be used again.

3.4.3.7 Code Identification Numbers
All drawings will be identified to the Boeing code identification number

(81205), listed in the Federal Supply Codes for Manufacturers Catalog, H4-1.

3.4.3.8 Equipment/Drawing Tree
The equipment/drawing tree shown in Figure 3.4-1 (Drawing 25-50034, Sheet
4 of 5) depicts engineering subsystem designs (drawings) as related to the

Voyager Spacecraft Bus, propulsion subsystemyand Science Payload.

The subsystems are identified by four-digit numbers that are identical to
the item numbers assigned to the subsystems by both the Voyager program

ure at the fourth level, and the spacecraft components

[(3]
Q
7
[o
(]
b=
=
o

W
jOXA

design parameters in Table 3.3-1.

Once engineering drawing numbers become available for the subsystem
described above, the equipment/arawing tree will be revised to incorporate
these numbers and include updated subcontractor data and further refine-

ments.
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SPACECRAFT
TELECOMMUNICATIONS
1.2.1.1
RELAY RADIO TELEMETRY %Erﬁﬁf%ﬁl
1.2.1.1.4 1.2.1.1.2
1.2.1.1.3
SEMBLY LOW-GAIN AN-
Lo
EXCITERS 1.2.1.1.3.1
Te2.10101

3-98 @

HIGH-GAIN AN-
TENNA INSTL
1.2.1.1.3.2

SHROUD AN-
TENNA INSTL
1.2.1.1.3.3

LAUNCH/ACQUISITION
ANTENNA INSTL
1.2.1.1.3.4

RELAY ANTENNA
(VHF)
1.2.1.1.3.5




GUIl
CON
POW

ATTITUDE REFER-
ENCE SUBSYSTEM
1.2.1.2

AUTOPILOT
SUBSYSTEM
1.2.1.3

7

INERTIAL REFER-
ENCE UNIT
1.2.1.2.1

SUN SENSOR
1.2.1.2.2

CANOPUS
SENSOR
1.2.1.2.3

REMOTE
SUN SENSOR
1.2.1.2.4

</
2




JANCE,
TROL &
ER

REACTION CONTROL CENTRAL COMPUTER &
SUBSYSTEM SEQUENCER INSTL
1.2.1.4 1.2.1.5

—_—

N9 TANKS INSTL
1.2.1.4.1

PLUMBING, TUBING
FTGS INSTL
1.2.1.4.12

14




SPACECRAFT BUS
1.2.1

ELECTRICAL POWER
SUBSY STEM
1.2.1.6

CONTROL
ASSEMBLY
1.2.1.5.1

SOLAR PANEL
ARRAY INSTL
1.2.1.6.1

SWITCHING
ASSEMBLY
1.2.1.5.2

BATTERY INSTL
1.2.1.6.2

POWER CONDITION-
ING EQUIPMENT
1.2.1.6.3

EQU
POR’

1.2,



SPACECRAFT STRUC-
TURE SUBSYSTEM

1.2.1.7

I

IPMENT SUP-

I STRUCTURE
1.7.1

—

PROPULSION/REAC-
TION CONTROL SUP-
PORT STRUCTURE
1.2.1.7.2

CYLINDRICAL

SHELL

1.2.1.7.1.1

VERTICAL
TRUSS

1.2.1.7.1.2

UPPER SUP-
PORT RING
1.2,1.7.1.3

LOWER SUP-
PORT RING
1.2.1.7.1.4

LOWER SUP-
PORT TRUSS
1.2.1.7.1.5

SECONDARY SUPPORT
STRUCTURE 1.2.1.7.1.6




HIGH-GAIN ANTENNA LOW-GAIN ANTENNA
MECH INSTL MECH INSTL
1.2.1.8.1 1.2.1.8.2

BOOST
SUPPORTS
1.2.1.8.1.1

DEPLOYMENT
LINKAGE
1.2.1.8.1.2

DEPLOY PIN
PULLERS
1.2,1.8.1.3

DISH PIN
PULLERS
1.2.1.8.1.4

POINTING
MECHANISMS
1.2.1.8.1.5
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SPACECRAFT MECH-
ANISMS SUBSYSTEM

1.2.1.8

VHF ANTENNA SCAN PLATFORM

MECH INSTL MECH INSTL

1.2.1.8.3 1.2,1.8.4
PLOY PIN DEPLOY PIN
LLER PULLERS
2.1.8.2.1 1.2.1.8.3.1
LOY DEPLOY
CHANISMS MECHANISMS
.1.8.2.2 1.2,1.8.3.2
'CKING LOCKING
CHANISMS MECHANISMS
2.1.8.2.3 1.2.1.8.3.3

79(2)




ENGINEERING
MECHANICS

SCIENCE BOOM

MECH INSTL
1.2.1.8.5

BACTERIOLOGICAL
BARRIER RELEASE
MECHANISM INSTL
1.2.1.8.6

BOOST
SUPPORTS
1.2.1.8.4.1

DEPLOY PIN
PULLERS
1.2.1.8.5.1

POINTING
MECHANISM
1.2.1.8.4.2

DEPLOY
MECHANISM
1.2.1.8.5.2

COVER ACTUA-
TION MECH
1.2.1.8.4.3

LOCKING
MECHANISMS
1.2.1.8.5.3




TEMPERATURE PYROTECH
CONTROL SUBSYSTEM SUBSYSTEN
1.2.1.9 1.2.1.10

PIN
PULLERS
1.2.1.8.6.1

THERMAL CONTROL-
PROPULSION INSTL
1.2.1.9.1

SEPARATION
MECHANISM
1.2.1.8.6.2

7

THERMAL CONTROL-
SPACECRAFT BUS
1.2.1.9.2




INSTALLATION
CABLES & TUBING
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3.5 FLIGHT EQUIPMENT/LAUNCH VEHICLE INTERFACE REQUIREMENTS

3.5.1 Scope

This subsection describes the interface between the Planetary Vehicle and
the launch vehicle. This interface definition includes consideration of
the nose fairing, shroud, launch vehicle adapter, and their relationship
to the Planetary Vehicle. It also describes Flight Spacecraft separation,

dynamic interactions during flight, and launch vehicle performance.

3.5.2 Mechanical

3.5.2.1 General Description

The Saturn IB/Centaur launch vehicle configuration is shown in Figure 3.5-1.
The interface between the Planetary Vehicle and the launch vehicle is a
field joint at the interface between the spacecraft and the 120-inch launch
vehicle adapter. (Saturn Station 2048). The interface consists of a
mechanical joint and electrical connectors that accommodate any required

operation between the Centaur and spacecraft stages.

2.5 N N TIald Tad
SeJele2 [ield Joints and A

Field Joints--The field joints (Figure 3.5-2) permit the Planetary Vehicle

to be handled in an encapsulated condition and will be designed to minimize

the complexity of field operation.

Spacecraft-to-Flight-Capsule Adapter--The adapter (Figure 3.5-2) is located

at Station 2107. The Flight Capsule is supported at the top of the Flight

Spacecraft equipment support structure upper frame.
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Figure 3.5-1:
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Spacecraft-to-Centaur Adapter--A relatively short adapter from the spacecraft

to the Centaur is required. The spacecraft also has a short ring at the
base of the truss that mates to the adapter upper ring. The Flight Space-
craft is located above Station 2048. The Flight Spacecraft structure is
octagonal in cross-section with eight vertical trusses at the apex and an
upper and lower bulkhead. The Planetary Vehicle loads are distributed

to the adapter by the eight vertical trusses.

Launch-Vehicle Adapter--The launch-vehicle adapter is located below Station

2048. The launch-vehicle adapter is the responsibility of the launch
vehicle contractor. The adapter, a cylindrical structure mounted on the
Centaur forward bulkhead ring, reacts to a combination of axial compression
loads and bending moments developed by the payload. The adapter also acts
as a support point through radial-mounted bulkhead-support cables between
the adapter and the Centaur payload ring for maintaining tension on the

Centaur forward bulkhead in the event that tank pressure is lost.

3.5.2.3 Shroud

Shroud Description--The shroud (Figure 3.5-3) is a 260-inch-diameter

cylindrical structure mounted on the Saturn IB and extends to the upper
level of the Centaur launch-vehicle adapter. The shroud has been designed
to handle a combination of axial loads, bending moment, and crushing
pressure. Snubbing and tensioning mechanisms are placed between the
launch-vehicle adapter and shroud to restrain lateral motion of the Centaur
and Planetary Vehicle, provide structural integration between shroud and
tank, and apply a tensile force to the tank. Figure 3.5-4 shows the

structural load paths from the Planetary Vehicle to the booster during
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Figure 3.5-3: Centaur Shroud & Payload Fairing Assembly
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prelaunch and boost phases. If pressure is lost, the Centaur and Planetary
Vehicle weight is transmitted through the launch-vehicle adapter and ten-
sioning mechanisms to the shroud. Springs on the snubbing rods compensate
for tank contractions or expansions during pressure changes or cryogenic
loading. Two umbilical tunnels are located between the shroud aad Centaur
as shown in Figure 3.5-3. The payload fairing consists of a nose cap and
two conical frustrums that are attached to the forward end of the 260-inch
shroud (as described in "Description and Status of Saturn IB," presented

to American Astronautical Society at Denver, Colorado, February 8-10, 1965,

by Fo L. Williams).

Shroud Ventilation--A gaseous-nitrogen shroud purge maintains an inert atmos-

phere in the plenum area between the 260-inch diameter nose fairing and the
Centaur and in the area around the electronic components located on the
forward liquid-hydrogen bulkhead. The purge is introduced at two points at
the start of propellant loading and continues until lift-off. It enters in
the area of the electronic components (1000 scfm at 40°F). A physical
barrier is placed around the electronic components to ensure that no gases

2 -1

will enter this area. The first purge is introduced into t

he physical
barrier and flows from there into the shroud plenum area. The barrier con-
tains orifices that maintain a slight positive pressure in the electronic

components area. The shroud-vent area required during ground purge is

sufficient for venting during the ascent portion of the flight.

Shroud Separation--The fairing and shroud are longitudinally separated

(Figure 3.5-3) into clamshell halves by linear-shaped charges in conjunction

with ringframe segmentation by explosive bolts. Explosive bolts also
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separate the snubbing and tensioning mechanisms from the Centaur tank.
Simultaneously, linear-shaped charges sever the shroud circumferentially,
just forward of the aft ring frame. Cold nitrogen-gas jets from two
pressurized spheres, located in the most forward portion of the payload
fairing, force the segments to pivot outward about the base hinge points. o
The cold-flow thrust, in conjunction with increasing angular velocity (as
a consequence of launch vehicle acceleration due to SIB thrust), frees

the segments from their base pivot points.

Environmental Control--Conditioned air is needed for the Voyager space- ®

craft during prelaunch (up to the time of lift-off). The launch vehicle

contractor (Centaur) has responsibility to provide the required environmental
control after Planetary Vehicle Launch Vehicle mating. Coordination between
the spacecraft and the launch vehicle contractor is necessary to ensure meet-

ing the thermal requirements.

3.5.2.4 Clearances

The basic shroud clearance requirement is that the shroud not encroach on

the spacecraft envelope (Figure 3.5-5) either during powered flight or o
shroud separation. No requirement is specified for any additional clearance

in shroud dispersion, absolute dimensions, or factor of safety. Collision

skids are not required on the spacecraft since a clamshell nose fairing is

used rather than an over-nose fairing. The motion of the fairing does not

present undue collision hazards.
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Figure 3.5-5: Spacecraft Envelope
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3.5.3 Electrical

3.5.3.1 General Description

The spacecraft and Centaur electrical interface is shown schematically in
Figure 3.5-6., The electrical interface includes:

1) RF coupler, ascent antenna and parasitic antenna in the Centaur shroud;
2) Electrical disconnects;

3) Spacecraft to umbilical electrical connections.

3.5.3.2 Umbilical Connections

There are three umbilical connections on the Centaur booster at Station
1779, 1999, and 2048, The upper umbilical (Station 1999) accommodates all
Planetary Vehicle hardlines connections to the launch complex through a
catenary cable assembly. The lowest umbilical (Station 1779) is used for
fueling the Centaur booster. The third umbilical (Station 2048) is required

for the interface functions between the Centaur and the spacecraft.

3.5.3.3 Telemetry

There are two telemetry interfaces between the spacecraft and Centaur.

1) Electrical signal connection through the (Saturn Station 2048)
connector which relays signals to the Centaur VHF transmission system.
(See Section 3.5.6.2)

2) Spacecraft S-band transmission via the ascent antenna located below
Saturn Station 2048.

The latter interface consists of a Boeing-furnished S-band antenna and a

matching parasitic antenna located in the Centaur shroud. The coaxial cabling

for this antenna includes an RF coupler at the interface (Saturn Station

2048). The ascent antenna separates from the Planetary Vehicle at the RF

coupler when Centaur separation occurs.
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Figure 3.5-6: Electrical Interface
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3.5.4 Centaur/Spacecraft Separation

3.5.4.1 Description of Separation

Separation of the Planetary Vehicle from the Centaur is initiated by a

signal from the Centaur to the spacecraft pyrotechnic subsystem. The inter-
faces to be separated include the mechanical interface at the junction of the
launch vehicle and spacecraft adapter, and the electrical connectors located

at the spacecraft-to-adapter interface.

3.5.4.2 Dynamic Limitations o
The dynamic limitations during and after separation of the spacecraft
require that the following criteria be satisfied:

1) The period between Centaur-burn termination and spacecraft separation
must be a minimum of 10 minutes to ensure that Centaur propulsion
transients have subsided and that the spacecraft is separated from an ®
attitude-stabilized vehicles

2) The angular velocity imparted to the Planetary Vehicle, including
Centaur residual angular rate, must not exceed 3 degrees per second
about any Flight Spacecraft axis and the angular rate shall not
exceed 1 degree per second has been a design goal.

3) Following separation, the differential velocity between the Planetary
Vehicle and the Centaur will be a minimum of 2 feet per second (0.61
meter per second). This requirement is intended to preclude acquisi-
tion of the Centaur by the spacecraft Canopus sensor; [

4) The separation forces applied to the Planetary Vehicle must be limited
to 47,000 pounds (21.3 x 103 kg) to avoid the possibility of spacecraft

damage;
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5) Incremental velocity magnitude uncertainty imparted to the Planetary

Vehicle must not exceed 415 feet per second (i4°78 meters per second).

3.5.5 Launch Vehicle Performance Requirements

3.5.5.1 Injection Energy

The Saturn S-IB is required to deliver an 8300-pound-minimum (3760 Kg) pay-
load to the injection altitude with a C3 of at least 18 km2/se02. A 100-
nautical-mile parking orbit is used. Its inclination is variable to obtain
the desired daily launch window within the launch azimuth constraints imposed
by tracking and range safety considerations. Detailed injection requirements

are contained in Section 2.0 of this document.

3.5.5.2 Injection Accuracy

Smaller spacecraft midcourse corrections can be obtained by accurate injection
guidance. The Launch Vehicle shall not require the Flight Spacecraft to
exceed a correction velocity of 75 meters per second. Error analyses con-
ducted by the launch vehicle contractor will provide estimates of the root-
mean square midcourse correction. Spacecraft (Centaur stage) aiming point at
injection is biased to comply with the planetary quarantine constraint. The
selected aiming point results in a Mars impact probability of 8 x 10_6. The
Mars impact probrbility allotted to the spent Centaur stage, however, is

5 x 10"6. The Centaur stage is provided with retro-rockets. The

post-injection retro-maneuver applied by the Centaur reduces its impact

probability to less than the allotted value of 5 x 1076,
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3.5.6 Inflight Instrumentation

3.5.6.1 Instrumentation

The extent of spacecraft-oriented instrumentation to be carried depends on
Centaur telemetry system weight and launch vehicle performance margins. These
margins, in turn, depend on the telemetry system (or modification thereof) that
is selected. The minimum instrumentation is

1) Spacecraft separation measurements;

2) Environmental measurements.

3.5.6.2 Centaur Telemetry

The Centaur telemetry system continuously transmits the spacecraft composite
modulation from time of launch until spacecraft separation. The data encoder
and Centaur telemetry interface is a two-wire interface (one wire is the
Centaur telemetry ground). The data-encoder output is transformer-isolated
and varies between zero and five volts. Mixer output to the Centaur and

spacecraft interface is a 400 to 100,000 bits-per-second pulse train.

3.5.6.3 Environmental Measurements ®
Monitoring of the acoustic levels within the shroud is desired during launch.
Since several events of acoustic significance occur, a continuous telemetry
channel is desired. The preferred location of the microphone is near the

centerline of the shroud and above the solar panels.

Knowledge of both the low- and high- frequency vibration within the spacecraft
is required. Three low-frequency and one high-frequency vibration trans-
ducers are positioned in the spacecraft at locations considered to be re-

presentative for structural load confirmation and equipment vibration levels.
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3.5.7 Dynamic Interactions During Powered Flight

3.5.7.1 Dynamic Behavior

The dynamic motions of the shroud and spacecraft during powered flight will
be analyzed. The objective of the analysis is to confirm that no contact
between the shroud and the spacecraft occurs during powered flight. The
dynamic reponse of the entire launch vehicle to the various lsunch events
will be considered in the analysis. The dispersion of the shroud and space-
craft will be defined relative to a common point on the base of the adapter.
The definition will include the effects resulting from longitudinal, lateral,
and rotational motion at the base of the adapter caused by controlled-power
flight of an elastic vehicle through the atmosphere superimposed on the
effects caused by vibration. Fabrication and assembly tolerances will be
included in the dispersions. Spacecraft characteristics used in analysis,
such as elastic properties, mode shapes, and damping, will be calculated

or derived from test data and will include thermal effects as appropriate.
The required shroud, adapter, and Centaur equipment-rack properties will be

provided by the launch vehicle contractor.

3.5.7.2 Shroud Separation Analysis

A dynamic analysis of shroud separation will be performed to determine the
motion of the shroud during and after separation. The analysis will include,
but not be limited to, the effects caused by:

1) Time variants in the action of explosive bolts, etc.;

2) Spring performance;

3) Spring geometries;

4) Center-of-gravity offsets

5) Residual rates;

6) Friction effects.
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The conditions requiring analysis include:

1)

4)

Expected shroud separation based on the arithmetic sum of worst
tolerances in spring forces, spring alignment, center-of-gravity off-
set, and residual rates;

Expected shroud dispersions based on the square root of the sum of
the squares. The statistical character of the input distrubances is
thus recognized and a statistical approximation of their effects is
obtained.

Rational failure conditionsj

Parametric investigation showing the effects of the individual input

disturbances.
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3.6 VOYAGER FLIGHT EQUIPMENT--TELEMETRY CRITERIA

3.6.1 Scope

The basic telemetry criteria to be applied in the design, construction,
testing, and use of the telemetry and data storage subsystem are specified.
The primary objective 1s that the data user have full confidence in the
displayed data. The data must represent the actual performance of the
spacecraft and the results of the all important scientific measurements
made of space and planetary phenomena. This task is to be done as simply
as possible. Criteria to be followed are found in the Mission Guidelines
and Specifications and result from preliminary design studies. Factors
considered are mission phase, measurement requirements (Section 3.10),
reliability, power, weight, volume, environmental, and radio communication

constraints.

3.6.2 Applicable Documentation

Military Specification MIL-I-6181D, "Interference Control Require-
ments, Aircraft Equipment"
Roeing Document D2-23834-1, Rev. A, "Voyager '7l1 Program Reliability

Analysis and Prediction Standards"

3.6.3 Description

3.6.3.1 General

The Flight Spacecraft will be equipped with communication equipment capable
of transmitting both Spacecraft Bus and capsule data to the DSIF. The
transmitted data consists of capsule engineering and science data, bus

engineering, cruise science, and planetary science data. After landing,
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capsule science data is transmitted to Earth and to the Spacecraft Bus.
The bus telemetry and data storage subsystem (TDSS) retransmits the cap-
sule data as a backup link to the capsule-to-Earth telemetry link. During
critical maneuvers, capsule and bus engineering data are stored for re-
transmission at a higher data rate. After planet encounter, high-rate
planetary science data is available simultaneously for both recording on
tape for retransmission at a lower data rate and for direct real-time

transmission.

The Voyager TDSS will use seven data subcarrier frequencies, eight data

rates, and six transmission modes to accommodate the data transmission

requirements associated with the various mission phases. Only two sub-

carriers are used at a time. An emergency mode is included for

engineering data only.

3.6.3.2 Data Formatting
The six data transmission modes are given in Table 3.6-1. Bit rate,
modulation, subcarrier frequencies, and mission phases are indicated for

each mode.
A separate PN-modulated subcarrier is transmitted during the lowest-data-
rate mode and the emergency mode. This ensures positive synchronization

during data recovery.

Planetary science data is processed a five-bit block at a time. Each five-

bit block is encoded into a 16-bit biorthogonal code word before transmission.
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Table 3.6-1: Telemetry Time Multiplexing And Modulation

SUBCARRIER SUBCARRIER
FREQUENCY FREQUENCY
MODE DATA BIT LOWER UPPER MISSION
TYPE RATE MODULATION| DATA CHANNEL|DATA CHANNEL | PHASES
Engrg 11 1/9) Two-Channel Data Launch
1 22 2/9 Coherent 400 C/s Acquisition
Capsule 111/9) PSK/PM Sync Maneuver
200 C/s
Engrg 11 1/9) Coherent 5331/3C/s Cruise
2 Capsule 11 1/9)133 1/3] PSK/PM
Cruise 111 1/9)
Sci.
Engrg 11 1/9) Coherent Post
3 Capsule 111/9)133 1/3] PSK/PM 5331/3C/S Maneuver
Stored 111 1/9) Option
Engrg
Engrg 55/9 Two-Channel Data Emergency
4 Coherent 100 C/S Cruise
PSK /PM Sync or
50 C/s Encounter
Engrg 66 2/3) Coherent
Cruise 166 2/3) 400 PSK,/PM 1.6 KC Encounter
5A Sci. Lower and
Capsule 166 2/3) Early
Planetary 8000 Coded 102.4 KC Orbital
Sci. PSK /PM
Upper
Engrg 66 2/3) Coherent Optional
Cruise 166 2/3) 400 PSK /PM 1.6 KC Mide
Sci. Lower Orbital
58 Capsule 166 2/3)
Planetary 4000 Coded 102.4 KC
Sci. PSK /PM
Upper
Engrg 66 2/3) Coherent Optional
Cruise 166 2/3) 400 PSK /PM 1.6 KC Late
5C Sci. Lower Orbital
Capsule 166 2/3)
Planetary 2000 Coded 102.4KC
Sci. PSK /PM
Upper
Engrg 66 2/3) Coherent 9.6 KC Opfionol
Cruise 166 2/3) 400 PSK/PM Encounter
Sci. | 166 2/3) Lower and
6 Capsule Coded Orbital
614.4KC
ch;rjetcry 48,000 PSK/PM
Upper
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The planetary science data modulates either a }93.4-kilocycle»Egpgéfrie;

(recorded) or 6l4.4-kilocycle subcarrier (:ga;_yjme) and is the only source

of modulation for these subcarriers.

Engineering data, capsule data, relayed capsule data, and cruise science

data are time-multiplexed in various modes and provide the modulation for

the lower-frequency subcarrier. Only one low-frequency subcarrier is

transmitted at a time (see Table 3.6-1). The five lower-frequency sub-
carrier data formats are given in Figure 3.6-1. A typical Engineering

data format is shown in Figure 3.6-2.

Programming of all onboard processors that contribute data to be time-
multiplexed onto the lower-frequency subcarrier is synchronized by the
timing generator section in the TDSS (see Figure 3.6-3). All data proc-
essors are activated for seven-bit periods at the proper time for multi-

plexing into the lower-subcarrier data stream.

Frame synchronization of the output frame is provided by the TDSS. Each
processor provides its own frame synchronization. (Frame synchronization
data from the various processors is processed in seven-bit samples, as is

all other data.) Frame synchronization on the ground eliminates data bit

ambiguity.

3.6.4 On-Board Data Storaae

Planetary science data is tape-recorded at 10,000 five—bit blocks per

second on command. Readout is automatic at a rate that depends on the

operating mode (see Table 3.6-1). . ;) .. - a0

A ) }
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TAPE
PLANETARY RECORDER BLOCK
SCIENCE BUFFER ENCODER
DATA STO\T 108 BITS
614.4 ke 77 | MODULATOR
LOAD PULSES TO:
1, ONBOARD CAPSULE |
2, ENGINEERING TIME GAIN
MULTIPLEXER-ENCODER GENERATION CONTROL
3, CRUISE SCIENCED.A.S. > 3
SUBCARRIER L INEAR TELEMETRY
SIGNALS BASEBAND
CENTRAL COMBINER [®TO RF
COMPUTER MODE LOW DATA RATE EXCITER
AND CONTROL| PN SYNC SUBCARRIER 3
SEQUENCER
GAIN
CONTROL
CAPSULE CAPSULE 1
ONBOARD f—@| STORAGE BIPHASE
DATA —» 72k BITS MODULATOR
CAPSULE ENGINEERING| “—p
DATA FROM§$— |STORAGE ——»| Or
RCVR/DET 72k BITS —> | J
ENGINEERING 1
ANALOG SUBCARRIER
SIGNAL ENGINEERING SELECTOR
MULTIPLE XER-
ENGINEERING A |ENCODER PN
DIGITAL
9.6 kc
SIGNAL 1.6 ke
INCL TIME WORD 533 1/3 cps
CRUISE ‘]*88 cps
SCIENCE $— P
DATA
(Reliability Considerations Not Shown)
Figure 3.6-3: TDSS Block Diagram
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Engineering data is stored continuously in the cruise mode with continuous

updating. Readout is on command.

Capsule data is stored continuously before capsule launch. Storage is up-

dated continuously. Readout is on command. ®

Capsule data is stored and read out at appropriate rates following capsule

deflection (see Table 3.6-1 Mode 5).

3.6.5 Subcarrier Amplitude Adjustment

Provision is made for adjusting both subcarrier amplitudes by mode

commands.
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3.7 VOYAGER FLIGHT EQUIPMENT TELEMETRY CHANNEL LIST

3.7.1 Scope

This description provides a preliminary flight data measurements list
(Table 3.7-3) of those measurements-deemed essential to successful flight
operations and analysis of the Voyager spacecraft, including failure
modes. In compiling the list, an effort was made to minimize the number
and complexity of measurements in each subsystem category, and yet retain
the ability to analyze and control spacecraft performance. Engineering
measurements on spacecraft performance are listed by subsystem, including

the condition and environment of the science package.
The flight data measurements list becomes the "Voyager Flight Equipment
Telemetry Channel List" on assignment of format channels for all data

items.

3.7.2 Description

3.7.2.1 Commutator (Multiplexer)

Spacecraft engineering signals to the data handling subsystems, both
analog and digital, are conditioned with respect to amplitude, pulse
width, and format position by an electronic data multiplexer. (See
Figure 3.7-1.) The analog channels are then digitized to seven-bit words.
Engineering data from the spacecraft science package and the capsule are
paralleled with the spacecraft engineering data into a master digital
mixer, the function of which is to complete the total signal format con-
sistent with the commanded data mode. Capsule engineering data rate is

specified to be ten bits per second.
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3.7.2.2 Measurements List

Flight data measurements given herein are tabulated to present pertinent

information concerning each measurement. The title of the form includes

the subsystem designation. The column headings are:

1) Measurement (name) -- The nomenclature of the measurement generally
describes the function.

2) Parameter -- This block lists the units and value range of the
measurement.

3) Systems accuracy -- Systems accuracy requirements are listed to pro-
vide end instrument, A/D converter, and digital word length criteria.

4) Signal type and bit number -- Analog and digital values given to the
telemetry subsystems are listed: (analog, 0-5V, +2.5V) (dig., 23
bits, 1 bit) etc.

5) Sample rate -- Sample rate is the bits per second rate of sampling
any one measurement determined by type of information, impact on

flight analysis, proportion of measure with time, and data mode.

Tables--The four tables following are: 3.7-1, Measurements Summary,

listing engineering measurements by sample rate, sample type (analog or
digital) and bit rate corresponding to each sample rate; 3.7-2, Space-
craft Flight Data, listing measurements per subsystem for sample rate
and parametric types; 3.7-3, the Flight Data Measurements List; and
3.7-4, Voyager Telemetry Channel Mode Data, listing modes versus mission

phase, data type and subcarrier bit rate.
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3.8 GUIDANCE AND NAVIGATION MANEUVER ERROR ALLOCATIONS

3.8.1 Pointing Angle Accuracy

To ensure sufficient accuracy of midcourse velocity corrections, it is
necessary that the thrust vector be oriented within a given small toler-
ance of a specific, precomputed line in inertial space along which the
velocity correction is to be made. This tolerance has been set at a 3-
sigma limit of 1.72 degrees, which essentially means that under no
circumstances can the thrust vector fall outside a cone of 3.44 degrees

included angle.

Thrust-vector pointing error results from five sources (listed in Table
3.8-1): 1inertial and optical sensors, initial conditions of the vehicle,
errors introduced when actually performing the maneuver, and thrust-
vector-control center-of-gravity offset. Since the sensors provide the
orientation reference for the vehicle, they must be closely aligned with
the vehicle axes. The gyros are used as both rate- and position-
measuring devices. Thus, their sensitivity (scale factor) and undesired
drift characteristics enter into the error considerations. Nonorthogo-
nality of their input axes produces errors due to cross-axis coupling
during maneuvers. The optical sensors are subject to null offsets,
which refer to the relation between zero output voltage and zero angle.
Since the vehicle is a torque-free body within specified error limits,
i1t undergoes sustained oscillations between these limits. Because these
errors are variable, they are added directly at their maximum levels,
which occur twice per limit cycle. Finally, installation of the main
engine introduces errors since its null position is not precisely

aligned with the vehicle center of gravity. The nozzle itself expels
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the gasses slightly offset from the nozzle centerline.

Table 3.8-1 also shows the manner in which the 1.72-degree error allow-
ance is budgeted between the five main error sources. The allowance is
weighted in such a way as to give the greatest tolerance to the thrust

vector control in the third midcourse maneuver since this, after all, is

the prime mover in establishing the velocity correction.

3.8.2 AV Measurement Accuracy

The three-sigma allowable error in the magnitude of the velocity incre-
ment is 3 percent. This error can be allocated to two areas, the

measurement error and the propulsion system error. Since the midcourse
correction and orbit-insertion propulsion systems are different, it is

convenient to treat each maneuver separately.

Midcourse AV--The magnitude of the midcourse AV corrections will lie

between 0.1 and 75 meters per second. The acceleration level will be
approximately 0.013 g's. The 3-sigma error in midcourse AV magnitude
is as follows:

-4
Accelerometer Null Bias = 100 x SX 10770 - 5 3¢

0.013 g
Accelerometer Scale Factor Error = 0.3%
Engine Tail-off Uncertainty = 0.005 m/sec.
Accelerometer Resolution Error = 0.0l m/sec.

For most midcourse AV maneuvers, the accuracy is seen to be limited by

the accelerometer bias. One-sigma AV magnitude accuracy is 0.8 percent.
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@ Table

E
S;rl?rrce Error Description Breakdown
® Mechanical Misalignment of Sensitive Axes with Vehicle:
Eriff During Inertial Hold: Random (0.015°/hr)
Bias (0.15%/hr)
Inertial Temp. (0.005°/hr/ °F)
Sensors
(G10 Gyros) Drift During Thrust: 0.2°/ht/g
*% g - Sensitive ps
0.5°/hr/g
® 2 - 9.6°/hr/g”
g~ - Sensitive >
1.6%/hr/g
Gyro Nonorthogonality: +
Mechanical Misalignment of Sensitive Axis with Vehicle:
Sun Sensor
Canopus Sensor
® gﬂf;:rzl Null Offset (Mechanical, Internal, and Electrical):
(Barnes JPL Sun Sensor
Ball Bros.)
Canopus Sensor
Sensing Accuracy:
Sun Sensor
Canopus Sensor
® Initial Limit=-Cycle Attitude:
Condition Switching Amplifier Null Offset:
Maneuver Gyro Torquer Scale Factor (330 ppm): +
Control CC&S Control Quantization:
Z:hg% ignm't Thrust Vector Control (Autopilot) ++
® Vehicle Angular Error (Without Thrust Misalignment)
Total Thrust Vector Angular Error
*Bcs%d on 100-Minute Third Midcourse Correction and 70-Minute Orb
10°F Temp Change
**2=-Minute, 2-g Thrust for Insertion
+ 100-Degree Maneuvers, Pitch and Roli
@ ++ Includes Effects of Engine Installation and Thrust Tolerances
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3.8-1: Vehicle and Thrust Vector Angular Errors at Maneuvers
Third . E
‘ Midcourse a;l;:-:i on Midcourse | Insertion Br':g;ef
L Maneuver (30 degrees) Error Totals | Error Totals | Ajjocation
| (30 degrees) ’ (30) (29) (3 0)
(degrees) (degrees)
(degrees)
Pitch | Yaw | Roll |Pitch| Yaw | Roll
0.05 |0.05 [0.05 |0.05 |0.05 | 0.05
0.025|0.025/0.025]0.018{0.018(0.018
0.250 [0.250]0.250|0.180]/0.180/0.180
0.08 [0.08 |0.08 [0.06 {0.06 |0.06
0.033
0.013|0.013/0.013
0.002(0.002
0.10 |0.08 [0.10 }0.10 |0.08 {0.10 | 0.463 0.340 0.500
0.08 (0.08 0 ]0.11 0.1 0
0 0 |0.04] 0 0 |0.04
0.025/0.025| 0 [0.032|0.032| 0
0 0 ]0.025] 0 0 0,025
0.005|0.005| 0 }0.007/0.007| o
—
0 0 |o0.10 0 0 |(0.10 0.162 0.196 0.300
0.15 |0.15 |0.15 |0.20 |0.20 |{0.20
0.03 (0.03 |{0.03 [0.04 |0.04 |0.03 0.265 0.354 0.450
0.033f 0 [0.033/0.033| 0 }0.033
0.01 0 (0.01 |0.01 0 [o0.01 0.049 0.049 0.200
1.400]0.230{ 0 0.600|0.600| o0 1.420 0.848 1.540
0.28110.273/0.317[0.295]|0.277|0.295 0.560 0.530 0.765
1.43010.386{0.317(0.668|0.662{0.295 1.540 1.000 1.720

- Injection Maneuvers,
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Insertion AV--The insertion AV will be provided by a fixed-impulse

solid engine, with secondary injection thrust vector control. The error
in the insertion AV magnitude will be due to the following sources:

1)  Uncertainty in propellant weight;

2) Variation in fuel specific impulse;

3) Variation in inert mass.

The 3-sigma combined effect of variations in fuel weight and fuel specific

impulse is 0.6 percent or 30 feet per second for a 5000-foot-per-second

Av.

The variation in inert mass i1s due to error in initial vehicle weight
and uncertainty in the amount of midcourse fuel and reaction-control
fuel consumed up to the time of injection. Also included is the uncer-
tainty in the amount of secondary-injection fuel used during insertion.

Weighing error = (0.05% x 2000 pounds) = 1 pound
100

Uncertainty in weight of reaction fuel

3
w
]
H
t+
i_l
@)

3
(o))

Uncertainty in weight of secondary
injection fuel used-equivalent inert
weight at start burn 4
TOTAL 11 pounds

The AV error corresponding to an error in inert weight of 11 pounds is

33 feet per second.
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1
Three sigma AV error = [502 + 33?] ® = 44 feet per second, or 0.88
percent of the velocity magnitude. The 1 sigma velocity error will

then be 0.29 percent.
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3.9 FUNCTIONAL DESCRIPTION VOYAGER FLIGHT EQUIPMENT FLIGHT SEQUENCE

3.9.1 Scope

This description covers the nominal sequence of operations performed

by the spacecraft from the period immediately preceding launch until
completion of the mission. A logical and detailed analysis of this se-
quence information provides a basis for determining many CC&S functions,
subsystem modes and direct command requirements. The flight sequence
charts are used to examine the entire decision making process for the
mission. Special attention is given to the functions which optimize
mission success to identify problems requiring design or mission planning

attention.

3.9.2 Flight Sequence

3¢9.2.,1 General Sequence of Events

The nominal flight sequence of operations for the 1971 Voyager represents
an expansion of mission profile data provided by JPL. The nominal se-
quence for the Flight Spacecraft is summarized on the "Flight Sequence
Subsystem Correlation Chart", Figure 3.9-2. This chart was prepared
using the "Project Elements Per Flight Phase Chart", Figure 3.9-1 as a
guideline. °‘The horizontal lines on the correlation chart represent the
14 phases of the mission as contained in the mission profile. (Page 7
Preliminary Voyager 1971 Mission Specification). The vertical portions
of the chart represent the Flight Spacecraft subsystems and their func-

tions per flight phase.

A general discussion of the nominal sequence follows. The detailed

sequence of events is described in 3.9.3.2. Any event or sequence of
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LAUNCH AND
INJECTION

ACQUISITI

LAUNCH
VEHICLE
SYSTEM

SPACECRAFT
SYSTEM

System checkout,
mating, and combined
systems testing.

System checkout.
Spacecraft — capsule
mating and combina-
tion testing, fuel and
pyro at explosive safe
facility. Mate to
adaptor and shroud,
transport to pad,
launch-vehicle mate
and testing. Power to
subsystems and capsule.

Temperature control
for spacecraft.
Telemetry from over-
all spacecraft. Shroud
separation. Orienta-
tion in parking orbit
through spacecraft
separation. Assurance
that Launch Vehicle
meets contamination
requirements,

Temperature control
after shroud off.
Telemetry to launch
vehicle. Separate
from launch vehicle.
Make engineering
measurements. Envir-
onment control .
Power to subsystems
and capsule.

Acquire refereng
objects. Provide
power to subsyst
and copsule. M
capsule. Enviro
tal control. Pro
rf signal to EartH
Make engineerin
measurements.

r—ﬁ

CAPSULE
SYSTEM

Final checkout, pro-
pulsion, radicisotope
thermoelectric gener-
ator fuel and pyro
installation and final
sterilization at explo~-
sive safe facility.
Spacecraft — capsule
mate (see Spacecraft
System).

Telemetry to spacecraft, temperature control
after shroud off. Make engineering measure

MISSION
OPERATIONS
SYSTEM

Operational readiness
test. Spacecraft and
Deep-Space Network
compatibility test.

Monitor telemetry.
Receive and evaluate
Eastern Test Range
prediction.

Monitor telemett
Send backup con
mands. Send D
Space Network
station predictio

LAUNCH
OPERATIONS
SYSTEM

Scheduling and coor-
dination of Eastern
Test Range activities.

Control launch. Moni-
tor telemetry. Provide
tracking to injection.

DEEP SPACE
NETWORK

Checkout and training
Support Mission Oper-
ations System.

Provide tracking as
required. Support
Mission Operations
System,

Provide two-way

SOURCE:  JPL Preliminary Voyager 1971 Mission Specification, dated 1 May 1965, Page
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INTERPLANETARY
CRUISE

INTERPLANETARY
TRAJECTORY
CORRECTION

SPACECRAFT-CAPSULE
SEPARATION AND
DEFLECTION

CAPSULE
CRUISE

e
:

1ms
onitor
men-
vide

g

Attitude control power
to subsystems and
capsule. Monitor
capsule status. Pro-
vide rf signal to
Earth., Make inter-
planetary scientific
and engineering
measurements.
Environment control .

Provide power to sub-
systems and capsule,
Monitor capsule.
Orient thrust vector.
Provide AV, Temper-
ature control. Make
engineering measure-
ments, Provide rf
signal to Earth. Reac-
quisition.

Provide preseparation
commands to capsule.
Provide telemetry re-
lay from capsule.
Orient separation vec-
tor. Separate sterili~
zation canister and
maintain contamination
requirements. Maintain
temperature control .
Mdke engineering mea-
surements, Provide

if signal to Earth.

Provide telemetry relay
Spacecraft power to spa
tems. Temperature con!
to Earth. Make science

measurements., Environ

ments.

Separate from space-
craft. Capsule attitude
control. Provide AV,
Provide.power, tem-
perature control and
sequencing. Make
engineering measure-
ments. Provide rf
signal to spacecraft.

i

Separate unessential S
equipment. Capsule a
attitude control. Pro- S
vide power, tempera- d
ture control , and D
sequencing. Make re
engineering measure- p
ments. Provide f c
signals to spacecraft. ir
a

as

rf

Monitor telemetry
and control overall
spacecraft as neces—
sary. Determine
orbit characteristics.

Monitor telemetry
Determine and send
midcourse command.
Control spacecraft as
necessary. Deter-
mine orbit character-
istics,

Monitor telemetry.
Determine and send
separation and deflec-
tion commands.
Determine orbit
characteristics.

Monitor telemetry from spac
Determine orbit characterist

communication lock. Provide tracking support (Mission Operations System)

Possible direct link
communications.
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" CAPSULE
ENTRY AND
DESCENT

LANDING AND
OPERATIONS

ORBITAL
INSERTION

ORBITAL
OPERATIONS

attitude control .
cecraft subsys-
rol . Rf signal
and engineering
nental control,

Provide relay if utilized

See Figure 3.9-2 for Expansion

Orient retrothrust
vector, Confirm
attitude to Earth.
Provide AV. Pro-
vide power. Tem-
perature control .
Make engineering
measurements.
Provide rf signal .
Reacquisition.

Orient planetary instru-
mentation. Make
science and engineering
measurements, Store
and read out data.
Attitude control.
Provide power, temper~
ature control, rf signal
and environmental
control .

abilize to low

ngle of attack.
urvive heat and
aceleration pulse.
eploy subsonic
itarder. Provide
pwer, femperature
pntrol , and sequenc-
9. Measure temper-
'ure, pressure, and
cceleration. Provide

signal to spacecraft.

Absorb landing impact
Separate retarder,
Erect S-band antenna.
Provide power, tem-
perature control, and
sequencing. Locate and
orient science payload.
Make science and engi-
neering measurements.
Provide rf signal to
Earth. Provide relay

if utilized.

Fcraff.
ics.

Monitor telemetry
from spacecraft and
capsule. Determine
landing site.

Monitor telemetry.
Determine and send
commands., Deter-
mine orbit character-
istics.

Monitor telemetry and
control spacecraft as
necessary. Determine
orbit characteristics.

Provide two-way communication lock. Provide tracking support (Mission Operations System)

|

Figure 3.9-1

:  Project Element Functions per Flight Phase
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events within the described flight sequence can be altered by reprogram-
ming the CC&S. Reprogramming of the CC&S can be accomplished at any time
prior to launch or while the spacecraft is in flight. Specifically at-
titude maneuver sequences may be either fully automatic or ground sequenced
or any combination between in accordance with the desired mission profile.
For example a fully automatic midcourse maneuver sequence is shown in
Paragraph 3.9.3. This sequence can be programmed in place of those de-
scribed in Paragraph 3.9.2. The automated approach would greatly reduce

the ground to air transmission and time-off-sun during maneuver sequences.

Launch and Injection--Launchings for the 1971 Planetary Vehicle will take

place after AFETR using the Saturn S-IB/Centaur 3-stage launch vehicle.
From liftoff until shroud ejection communication from the Flight Space-
craft will be through a parasitic antenna located in the shroud. After
shroud ejection, communications will be maintained via the Flight Space-

craft low-gain antenna.

A parking orbit ascent mode shall be utilized for the Mars 1971 mission.
An arbitrary limit of 25-minute parking orbit presently exists for the

1971 mission; the minimum parking orbit coast time will be two minutes.

The launch vehicle will inject the Planetary Vehicle on a trans-Mars
trajectory and will provide the signal to initiate separation of the
spacecraft from the Centaur stage. Dispersions of the Planetary Vehicle,
produced by the launch vehicle, are to be correctable by a maximum 1-

sigma midcourse velocity increment of 15 meters/second applied two to ten

days after injection.
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Initial Acquisition--After separation of the Planetary Vehicle from

the Centaur stage, the Centaur stage will decelerate by employing retro-
thrust. Immediately after separation, solar panels, high and low-gain
antenna, and the magnetometer boom will be deployed and the science scan
platform unlatched. The Planetary Vehicle will rotate in yaw and pitch
maneuvers to acquire a Solar reference fix, and then be programmed through
roll for acquisition of Canopus. Power during boost and acquisition will
be supplied by batteries. Solar acquisition will nominally be completed

within 20 minutes after injection.

Cruise Phase--During the cruise, the Planetary Vehicle will remain atti-

tude stabilized. Continuous operational coverage for the Planetary Vehicle

during the cruise phase will be supplied by the Deep Space Network.

The Flight Spacecraft, except during maneuvers, will accept data at

/ the rate of 10 bits/second from the Flight Capsule and transmit it to
Earth. The transmitted data will consist of commutated engineering data
frames alternated with science data frames. The Flight Spacecraft can
transmit at least five commands to the Flight Capsule before separation.
The commands may be Flight Spacecraft-stored commands and/or ground com-

mands transmitted via the Flight Spacecraft.

lMidcourse Maneuvers--The Planetary Vehicle will have the capability to

perform at least four midcourse corrections. Sufficient total midcourse
velocity increment will be available to correct trajectory dispersions;
the required increment is approximately 75 meters/second. The first

midcourse maneuver may occur as early as two days after launch. The
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commands for midcourse corrections will be computed on the ground, trans-
mitted to the spacecraft and stored in the CC&S until initiation of the

maneuver. The required data is:

1) Roll turn magnitude and direction

2) Yaw turn magnitude and direction

3) AV

4) Thrust time for backup termination of thrust in case of malfunc-

tion of the accelerometers

5) Maneuver start time

6) Antenna Repositioning Commands (when required).

Flight Capsule--Flight Spacecraft Separation--The Flight Capsule is

mounted forward of the Flight Spacecraft, and interfaces with the
Flight Spacecraft at the field joint between the two units. The flight
separation joint is contained within the capsule-adapter, with the
flight separation forward of the field joint. Flight Capsule separation
will involve separation of the bio-barrier front half, orientation of
the Planetary Vehicle for capsule separation, separation of the capsule
and reorientation to the curise attitude after which the aft portion of

the barrier will be jettisoned.

Orbit Insertion--Orbit insertion and capsule entry, descent and landing

is to occur within view of the DSS at Goldstone, California. The nomi-
nal retromaneuver sequence for orbit insertion is as follows.
1) A discrete command to execute the start of the retromaneuver
is sent from Earth;
2)  The spacecraft will then perform a roll, reacquisition of Earth

with the high-gain antenna and a verification of the roll maneuvers;
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3) The spacecraft will then yaw (max 75°) and verify the yaw maneu-
ver and proceed with retro motor burn; and

4) The yaw and roll will then be performed in inverse order by the
spacecraft and reacquisition of Earth and Canopus accomplished.

The nominal orbit insertion maneuver results in an off-Sun time of

45 minutes.

Orbit Sequence--Orbital parameters will be determined within the first

few orbits around Mars. Following celestial reference reacquisition,
the scan platform will be positioned and the planetary science acquisi-
tion program initiated. Data acquisition, recording playback time and
transmission modes will be selected and sequenced based on onboard logic

and ground commands.

3.9.2.2 Detailed Sequence of Events

The accompanying flow diagrams and flight sequence charts show the

flight sequence for nominal 1971 Voyager mission.

Flow Diagrams--Those phases of the mission profile which are directly

applicable to the Flight Spacecraft (phases 1 through 6 and 8, 13 and
14) have been expanded as separate flows to present an overall sequence

for the flight mission.

Flight Sequence Charts--Each flow diagram describing the Flight Space-

craft functions has a corresponding set of flight sequence charts. The
flight sequence charts describe the sequence of events required to

accomplish the phase of the mission under consideration. Except for
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the sequence from countdown through Centaur retrofire, a five column

format is used.

Column 1, Events--Events are listed by number in order of occurence.

Each event consists of one or more simultanious operations.
Column 2, Time--The time at which a given event occurs. Time is refer-
enced from liftoff T = 0, from the start of a maneuver M = 0O, from start

of capsule separation S = O or from start or orbit insertion maneuver I = O.

Column 3, Source--The subsystem executing the particular operation

or operations. See Table 3.9-1 for abbreviations used.

Column 5, Comments

Time Line Forms--Time line forms are used to show the concurrent,

overlap and sequential or other time relationships of major functions
shown on the flow diagrams or events contained on the flight sequence
charts. Time lines are included for the boost phase and for the first

midcourse correction maneuver.
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Table 3.9-1: LIST OF ABBREVIATIONS

Pyro Pyrotechnics
CC&S Central Computer & Sequencer
Telecom. Telecommunications
SFOF Space Flight Operations Facility Qo
DSN Deep Space Network
TVC Thrust Vector Control
M/C Midcourse Correction
s/c Spacecraft
IRU Inertial Reference Unit ®
LCE Launch Complex Equipment
MOS Mission Operational Systems
T/M Telemeter
A/R Attitude Reference ®
Power Electrical Power System
Science Flight Spacecraft Science Subsystem
Data Mode 1 Transmission of engineering data only
Data Mode 2 Transmission of both engineering and
real-time science data time sharing
the telemetry link @
Data Mode 3 Transmission of real-time science only
Data Mode 4 Playback transmission of non-real time
science and real-time Mode 2 data time
sharing the telemetry link
R/C Reaction Control o
DSIF Deep Space Instrument Facility
L/V Launch Vehicle
LOX Liquid Oxygen
Mech. Mechanism
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LIST OF ABBREVIATIONS

TWTA
DAS
Engr.
DHS
AV

DSS

Traveling Wave Tube Amplifier
Data Acquisition System
Engineering

Data Handling System

Velocity Increment

Deep Space Station
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Figure 3. 9-5: 1971 Mission — 2. 0 Launch and Injection
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3.9.3 Automatic Maneuver Sequence

Typical alternate 2 axis automatic mode maneuver sequence possible by
reprogramming the CC&S are shown in the following pages. A relationship

of ground transmitted commends for each sequence is as follows:

Nominal Sequence Automatic Sequence
Ground Commands Ground Commands
5.0 A 5.0 C 13 5.0 A 5.0C 13
Maneuver First Third Orbit First Third Orbit
Sequence Mid- Mid- Injec- Mid- Mid- Injec-
Course Course tion Course Course tion
Correction Parameters 5 7 5 5 7 5
Orient Spacecraft 2 2 2 0 0 0
Velocity Maneuver 1 1 1 0 0 1
Reverse Spacecraft
Orientation 1 1 1 0 0 0
Celestial Acquisition 1 1 1 0 0 0
10 12 10 5 7 6
Total Necessary
Ground Commands 32 18
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3.10 VOYAGER FLIGHT EQUIPMENI, SPACECRAFT LAYOUT, AND CONFIGURATION

3.,10,1 Scope

This section defines the Voyager spacecraft configuration and layout
including: spacecraft reference axes and planes, coordinate system,
mechanical alignment provisions, general arrangement of the exterior
of the spacecraft, and equipment arrangement. A functional block dia-

gram is included for additional reference.

The preferred configuration, Boeing Model 945-6026, was selected

because it offers the following important features:

1) Convenient access to the electronic assemblies and propulsion
subsystems, resulting in ease of installation, maintenance, and
testing, thereby enhancing the spacecraft reliability;

2) A large (8 ft. by 12 ft. ) paraboloidal antenna, allowing
for telecommunication data rates consistent with real-time trans-
missiong

3) Modular construction of subsystems, allowing complete checkout
before installation in the spacecraft;

4) Versatility in the sizing, location, and construction of electronic
assemblies, providing for optimum grouping of electronic functions
for simple interfaces, and for testing and installation. Thermal
balance and center-of-gravity location are more easily attalned.

5) Versatility in general configuration for adaptability to 1973
and later Voyager missions. The Spacecraft Bus is so designed
that a range of trajectories and Mars orbits can be achieved for

the 1973 mission. Also, the 1975 and 1977 flyby missions can be
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performed with the orbit insertion propulsion module removed, or
if mission plans change so that orbital missions are desired for
those years, the orbit insertion propulsion system can be included
to give a range of achievable Mars orbits.

6) Adaptability of general configuration to the 1969 test flight.
The configuration is compatible to the Atlas Centaur launch
vehicle with only minimum changes (principally to the high-gain
antenna and to the solar panels), thereby retaining a high degree

of commonality to the 1971 configuration.
A summary of the alternate configurations that were studies, and the
justification for the selection of this configuration is presented in

D2-82709-2, Section 3.2.

3.10.2 Applicable Documentation and Drawings

3.10.2.1 Documents
M61-205, "Optical Alignment Reference Manualj;"
M61-100, "Optical Tooling Instruments, Accessories and Techniques
Manualgs"
M41-02, "The Boeing Optical Tooling Manualj;"
M61-200, "Optical Tooling Service Manual" (Volume I & II);
D1-8001, "The Boeing Company Measuring Program;"
D1-8002, "The Boeing Company Primary Standards Capabilityj;"
D1-8005, "The Boeing Company Calibration Procedure;"
D2-5378, "Measurement Test Equipment Calibration Procedure"

(Volume III).
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3.10.2.2 Drawings
Figure 3.10-1, Isometric of Flight Spacecraft
Figure 3.10-2, Boeing Drawing 25-50034, Sheet 1-- General Arrangement;
Figure 3.10-3, Boeing Drawing 25-50034, Sheet 2-- Inboard Profile;

Figure 3.10-4, Boeing Drawing 25-50034, Sheet 5-- Functional Block
Diagram;

Figure 3.10-5, Boeing Voyager Coordinate System.

3.10.,3 Functional Description

3.10.3.1 General Description
The general arrangement of the spacecraft is shown in Figure 3.10-1

and 3.10-2 . This configuration complies with the Jet Propulsion

Laboratory "Mission Specification" (Project Document 45) spacecraft

envelope, capsule interface, and launch vehicle interface.

The pertinent features of the spacecraft are:

1) An equipment-support module that provides the mounting surface
for the equipment packages.

2) A lower truss that supports the equipment-support module, pro-
pulsion system reaction-control module; and all deployable
components.

3) Gross total solar-array area of 258 square feet, (236-square-foot
net area) with growth potential to 375 square feet by adding one
segment to each of the three arrays.

4) A single planet-scan platform built to accommodate the hypotheti-

cal science payload (5.2 cubic feet) described in JPL Document

No. 46, "Mission Guidelines".
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7)

8)

10)

11)

12)
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A separately mounted ultra-violet spectrometer oriented to view
the planet atmosphere over approximately one-quarter of the
circumference.

An 8 ft. 2-in. by 12 ft. 2-in. paraboloidal antenna.

A boom for mounting the magnetometer. This boom is shown extending
320 inches from the hinge, although the final length will be
determined as the spacecraft magnetic field becomes defined.
Separately mounted omni-, VHF-, and two ascent-antennas.

Canopus tracker, fine Sun-sensor and IRU mounted in a single
package for dimensional control. The package is located on
reference plane B and the X-axis.

A modular midcourse- and orbit-insertion-propulsion subsystem.
This subsystem is assembled as a unit for orbiting configurations.
For flyby configurations, the midcourse propulsion sybsystem com-
ponents are rearranged slightly but no new or changed components
are required.

A cold-gas (N2) reaction~-control subsystem. This subsystem 1is
assembled as a part of the propulsion subsystem module.

Electronic packages are mounted on the exterior surface of the
cylindrical upper structure (equipment-support module). This
mounting arrangement provides easy access to electrical connectors

through removal of nonstructural insulation panels.

The arrangement of the electronic packages on the spacecraft are shown

in Figure 3.10-3. The installation of the packages is defined in Sec-

tion 4.4.2,

A functional block diagram is shown in Figure 3.10-4.
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3.10.3.2 Detailed Structural Alignments for Voyager

The tolerances described in the following sections are those determined
to be required for proper operation of the spacecraft, and are those
that have been used in all preliminary design calculations. As the
spacecraft design progresses and more detailed data becomes available,

these tolerances will be reviewed and changed as required.

It is intended that an alignment fixture be constructed and used
throughout the fabrication and assembly of all spacecraft to ensure
proper alignment maintenance of all critical elements. This fixture
will be designed and developed together with the quality control
department so that a common basic fixture can be used for manufacture
and quality control checking. The fixture will be such that the
spacecraft can be returned to it at any time for critical alignment
adjustments and prelaunch checks whenever desired. Consideration will
be given to a requirement for a duplicate fixture at the launch site,
and a similar or less elaborate fixture can be used to check the
effects of space environment on alignments in a test chamber if desired

for the proof test model.

The design requirements for the spacecraft will include provisions for
maintaining alignments during shipping and handling, boost accelerations
and vibrations, and thermal warpage during the extreme temperature

environments of space.

The alignments on the assembled spacecraft will be checked and recorded

for each spacecraft. Checking will be done in a simply supported,
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vertical position with sufficient auxilliary support to simulate zero-

gravity conditions on overhanging members.

Spacecraft Reference Axes and Planes--Coordinate System--The spacecraft

coordinate system consists of three mutually perpendicular reference
axes as shown in Figure 3.10-5. The X and Y axes lie in a plane (plane A)
parallel to the spacecraft-launch vehicle interface plane. The Z axis
is perpendicular to this plane and is located at the centerline of the
spacecraft to coincide with the launch vehicle centerline. The pitch-
reference axis is the X axis and positive pitch is clockwise when the
spacecraft is viewed from the side opposite the side containing the
attitude reference subsystem. The yaw axis reference is the Y axis
and positive yaw is clockwise when the spacecraft is viewed from the
high-gain-antenna side of the spacecraft. The Z axis is the reference
for roll, and positive direction is defined as clockwise when the

spacecraft is viewed from the Sun side.

Plus-X is measured away from the spacecraft centerline (z axis) in the
direction toward the attitude reference subsystem. Minus-X is measured
away from the spacecraft in the direction opposite the attitude refer-

ences.

Plus-Y is measured in the direction generally away from Canopus and

minus-Y is in the direction generally toward Canopus.

Plus-Z is measured in a direction away from the Sun from reference-

plane A, Minus-Z is measured in a direction toward the Sun from

3-252




wa)shks ajeuipioo) Jabehop bursog :6-01 "¢ 84nbi4

SIXY Z- 4
SIXY X + NAS oL SNdONVD Ol SIXY A-

BOEING
D2-82709-1

RS 140ddNS
dIMO

v ANV - / ~ 1aNVd ¥V10S
W3LSASENS m ) SIXV X=
110d +
SIXV A+ 35N3¥343y 3ANLILLY wmm%h
g INVTd
SIXv 2+ INIWAINO3

3-253



BOEING

D2-82709-1

reference plane A, and, therefore, extends down from the spacecraft.

The plane in which the X and Y axes lie is defined as the base
plane or plane A. It is defined as spacecraft station O (Saturn
Station 2048.0) and spacecraft stations are numbered positively up
(in a plus-Z direction), from this base. It is located at the

spacecraft launch vehicle interface.

A secondary reference plane B is established as being normal to
reference plane A and passing through the attitude reference
subsystem mounting plate that is located on the plus-X side of

the spacecraft. This plane shall be perpendicular to the reference

plane A within 0.20 milliradians.

Attitude Reference Subsystem Alignment--The attitude reference

subsystem package is provided with mounting guide pins that must
align with reference plane B exactly, and be parallel to reference
plane A with +0.5 milliradians. The vertical position of these
mounting guide pins must be controlled to the reference plane A

within +0.025 inches.

Canopus-Sensor Mounting--The Canopus sensor is located within the

attitude reference subsystem package. It must be aligned to the
package guide pins and mounting base within +0.5 milliradian and
shall be oriented 12 degrees from reference plane B and in a plane
parallel to reference plane A. Alignment prisms will be used to

align the sensor.
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Fine Sun-Sensor Mounting--The fine Sun-sensor is located in the

attitude reference subsystem package. It must be aligned to the

package mounting base and the guide pins within 0.5 milliradians.

Inertial Reference Unit--The IRU is mounted in the attitude

reference subsystem package. It must be aligned to the package

mounting base and guide pins within 0.5 milliradian.

Coarse Sun-Sensor Mounting--Coarse Sun-sensors are mounted on the

dark side of the solar panels along the X axis. These sensors

must align with reference plane A within +0.5 degree.
Additional coarse Sun sensors are mounted on the base of the
spacecraft (on the Sun side). They are mounted directly to the

structure in reference plane A.

Sun Gates Mounting--Sun gates are mounted parallel and perpen-

dicular to reference plane A within + 10 minutes.

Magnetometer Mounting--The magnetometer is mounted on an extendable

boom in the-Y,-X quadrant. It will be aligned with the Z axis

within +1 degree in all directions.

High-Gain-Antenna Mounting--The high-gain antenna is mounted on a

deployable boom and driven by a servomechanism. The extended and

locked position of the antenna, with the drive system in its
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neutral position, will be aligned to the theoretically required

angle within +2 milliradians.

Propulsion and Reaction Control Subsystem Alignment--The propulsion

and reaction control subsystem for the 1971 flight is assembled as a
modular unit containing the midcourse engines, the orbit insertion
engine reaction control nozzles, and all tankage and plumbing. This
module will be prealigned as follows:
1) The thrust axls of each midcourse engine will be aligned to
the orbit insertion engine thrust axis within +0.25 degree.
2) The orbit insertion engine will be located so that its
thrust axis passes through the center of gravity of the module
within 0.03 inch. The module center of gravity will be
determined experimentally on each module.
3) The reaction-control nozzles will be located with the thrust

axes normal to reference plane A within +2 degrees.

The module will be installed in the spacecraft so that thrust centerline
of the orbit insertion engine lies within a circle 0.06 inch in

diameter in a plane parallel to reference plane A and passing

through the spacecraft center of gravity. The center of gravity in

this plane will be determined experimentally on each spacecraft.

The station location of the center of gravity will be calculated.

Science Scan Platform Mounting--The science-scan platform is

mounted on the -Y side of the spacecraft with a two-axis gimbal.
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The axis in the X direction will be aligned parallel to reference

plane A and normal to reference plane B within +0.5 milliradian.

Omni-antenna Mounting--The omni-antenna, located on a boom in the

-X, +Y quadrant will be aligned so that the antenna axis is at
an angle of 175 degrees to reference plane A and 87 degrees to
reference plane B measured clockwise, and when viewed in the
direction of the -X and -Z axis respectively. These angles will

be held within +1 degree.

VHF Antenna Mounting--The VHF antenna is located on a boom in

the +X, +Y quadrant. Its antenna axis will be aligned so that it

has an angle of 190 degrees to reference plane A and 175 degrees to
reference plane B measured clockwise, and when viewed in the direction
of the =X and -Z axis respectively. These angles will be held within

+1 degree.

Science-Instrument Alignment--The science payload is not currently

defined. Alignment requirements will be added when specific

instruments are known.

Solar Panels--Solar panels will be parallel to reference plane A

within +0.5 degree.

Reaction Control Nozzles--Reaction control nozzles will be mounted

with the thrust axes normal to reference plane A within +2 degrees.
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3.10.4 Assessment of Preferred System

3.10.4.]1 Evaluation Summary

Table 3.10-1 summarizes the assessment of the preferred Voyager
system against five evaluation criteria: probability of success,
orbit characteristics, technical risk, spacecraft weight, and config-
uration design. The table shows that the specified mission success
and orbit requirements can be met, that technical risk has been
minimized by selecting all parts from a preferred parts list, that
the spacecraft weight is within its allocation, and that the config-
uration design satisfies the major design criteria. These
evaluations are briefly discussed in the following paragraphs

and are explained in more detail in Volume B, Section 3.2.3.

3.10.4.2 Probability of Success

This criterion measures the ability of the system to achieve a
successful mission on each launch attempt, i.e., to return the
required data from the vicinity of Mars. Figure 3.10-6 is a plot
that compares the estimated probability of success of the preferred
system with that specified in JPL Document No. 45. Two estimates
are shown: one for the combination of the launch vehicles and

the Spacecraft Bus and propulsion, the other for the above systems
plus the science payload. The latter curve is based on postulated
instrument systems and includes a redundant TV camera. It is
included to show the effect of the science payload reliability on

overall miseion success and to obtain estimates of overall mission

3-258




BOrING

D2-82709-1

TABLE 3.10-1

EVALUATION SUMMARY

EVALUATION CRITERIA PREFERRED SPECIFICATION

SYSTEM

Probability of Mission Success

Total Mission (395 days) 0.25 None
Launch through 30 days in 0.62 0.45
orbit
Launch through injection 0.73 0.65
into Mars orbit
Launch through capsule 0.83 0.80
separation
Data Acquisition and Recovery
Orbit Periapsis per Period 2700 km per 18.3 Contiguous
Coverage (Example) hr Contiguous Re- Repeat 30-90
peat every 30 days
days
Occultation
Sun (Days to Occultation) 55 > 30
Canopus &£ 1-2 hrs per
Earth orbit
No data transmission
degradation.
Technical Risk All parts from Use minimum
preferred list risk
components
Spacecraft Weight (pounds) 5500 5500
Configuration Design High rating (See Sections
against all 1.0 and 2.0)
design
criteria
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success for comparison with the mission specification.

3.10.4.3 Data Acquisition and Recovery

In the above mission-success analysis it was assumed that the required
data would be obtained if the spacecraft were placed in and maintained
in its prescribed orbit. The characteristics of an example orbit

are shown on Table 3.10-1. The example orbit was selected from a
range of available biologically safe orbits within the capability of

the preferred spacecraft. (See Section 3.1).

3.10.4.4 Technical Risk

Technical risk measures the probability that the spacecraft components
will be completely operational and meet their performance, reliability,
and cost requirements by the spacecraft launch data. To maximize

this factor a preferred parts list was assembled from existing
preferred parts lists that includes only the most suitable parts for
an interplanetary mission. All parts recommended for use in the

Voyager system were then selected from this list.

3.10.4.5 Weight

As shown on Table 3.10-1 the entire spacecraft weight allocation was
used. The weight "margin" available after initial system definition
was used to maximize the probability of success as described in

Section 3.2.3 of Volume B.
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3.10.4.6 Configuration Design

The configuration design was rated in detail against the criteria
of reliability, mass properties, views, and versatility. The
evaluations were performed by breaking each of the criteria

into several subcriteria, then rating the system against each of
these subcriteria using a number-value from 1 to 10, 10 being best.
This evaluation is reported in Section 3.2.3 of Volume B, and

shows that the configuration chosen for the preferred system was
the best of the alternatives considered, and is rated high against

all criteria.

3.10.5 Maximization of Probability of Success (PS)

3.10.5.1 Introduction

A continuing study to ensure maximum probability of mission success
within system constraints such as contamination, weight, volume,
power, and launch period was conducted throughout the Voyager Phase

1 contract.

A successful mission is defined as a mission during which a prescribed
quantity and quality of data is received on Earth. To accomplish
this, a system must successfully deliver data-gathering equipment to
Mars and maintain it in the proper position for a prescribed period

of time; the data must be gathered, sent back to Earth, and received.
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The philosophy followed in this study was to maximize the probability

of success considering the combined effect of all factors that contribute

to success. The factors are those that determine whether each of the

events of the previous paragraph can be completed. They are delineated
below:

1) Reliability--the probability of no equipment failures that will
prematurely terminate or significantly degrade the mission.

2) Performance--the combined probability that the system will perform
within mission tolerances. This includes data quality and quantity
tolerances.

3) Environment--the probability that possible ranges of radiation,
charged-particle flux, meteorite flux, etc., can be succéssfully

negotiated without mission failure.

3.10.5.2 Study Approach
The approach used is as follows:
1) All factors that contribute to mission success were identified to

a level of detail commensurate with the Phase 1A design;

2) The combined effect of all the factors was then determined by
a system simulation;

3) Defects in the system design were then corrected to the maximum
extent possible by redesign;

4) The probability of success of the new design was then determined

by the system simulation and the iteration was continued.
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In correcting defects by redesign, considerations were made in the

following order of priority:

1) Use of different subsystems or components;

2) Redesign of subsystems or components to increase reliability,
or to provide a larger margin for performance or protection
against the environment.

3) Addition of redundancy.

3.10.5.3 Probability of Success Maximization for Configuration 945-6026
The following discussion illustrates the method of maximization of

probability of success (PS) for Configuration Model 945-6026.

Figure 3.10.7 is a plot of probability of success versus mission time.
It illustrates the specification of mission success capabilities as
compared to the predicted capabilities on the preferred system for

three iterations.

For the first iteration, the system was defined from a collection of
independent subsystems and performance definitions without prior
integration. Simulation and subsequent analysis of this system were
accomplished and as shown on Figure 3.10.7, the predicted probability

of success was significantly below the specifications even when the

effect of failure of the scientific subsystems was not taken into account.
Two sources were traced as causes of low success levels: low reliability
and guidance error accumulation. The guidance error accumulation was

rectified by improving the midcourse-correction-aim-point selection
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logic. An attempt was made to increase reliability through changes
in subsystem components and limited incorporation of redundancy. These

changes were incorporated to define a system for the second iteration.

As shown on Figure 3.10.7, this redifined system showed improved probabil-
ity of success, but the objective of meeting the specification was
still not attained. All system degradation in this sytem was traced

to low reliability.

The process of defining the system for the third iteration was then
reduced to maximizing reliability. This was accomplished by using
more reliable components and adding redundancy within the maximum

weight constraint of the spacecraft.

The method chosen for selecting components to be made redundant was
one developed by Dr. Frank Proschan of Boeing Scientific Research
Laboratories and described in "Mathematical Theory of Reliability" by
Barlow and Proschan published in 1965 by John Wiley. In this method,
maximum reliability is calculated first for the basic system.
Progressive assignments of redundant components are then made by
selecting the component that will result in the maximum increase in
reliability per unit weight added. Redundant items are added until

a weight constraint is reached or until the incremental improvement in
Ps for a given weight addition is insignificant. The program output
includes the sequence in which redundant components are added, the
progressive increase in reliability, and the progressive increase in

weight of the system. By choosing the first 20 redundant parts called
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for by the program, the Spacecraft Bus and propulsion system reliability
was increased from 0.58 to 0.89 at the expense of about 100 pounds. These
redundant components were incorporated to redefine the system for the

third iteration.

It can be seen from Figure 3.10-7, that this third-iteration system
exceeds the specifications at all mission times. The mission success
definition used with the data of Figure 3.10-7 accounted for proper
operation of the launch vehicle and the Spacecraft Bus and propulsion
only. Figure 3.10-8 shows the effect of adding the planetary science
payload. The highest line on Figure 3.10-8 is the same as that on
Figure 3.10-6, and is valid for a definition in which mission success

is considered attained if any science instrument and is able to return
data. The second line from the top resulted from the assumption that the
mission would be degraded an equal amount from the loss of any science
subsystem component. The third line from the top resulted from the
assumption that TV camera data was worth 90 percent of the mission and
each of the remaining science instruments contribute only 1 percent each.
The fourth line from the top resulted from the assumption that any
science subsystem failure would completely fail the mission. These

data illustrate a bracketing from the most optimistic to the most
pessimistic definition of success. The data also shows that partial
success evaluations are extremely sensitive to the judgments made on

the value of the data obtained from each instrument.
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3.11 PLANETARY QUARANTINE

This section describes the techniques for complying with the planetary
quarantine constraint: The probability that Mars is contaminated prior
to the calendar year 2021 as a result of any single launch shall not be
greater than 1 in 10,000. Included are the probability allocations
assigned to the consideration of contamination by Centaur booster impact,
capsule canister impact, Flight Capsule contributions, Flight Space-
craft accidental impact, propulsion systems exhaust products, and ejecta

resulting from spacecraft meteoroid impact.

Sterilization of the orbit insertion and orbit trim propulsion systems
and attitude control systems i1s specified. Further analysis is necessary
before decontamination constraints are imposed on other Planetary Vehicle

arease.

3.11.1 Applicable Documentation

The document applicable to this section is Boeing Document D2-82733-1,

Planetary Quarantine Studies, July, 1965.

3.11.2 Functional Description

To reduce .the probability of accidental impact of the Centaur booster

case and the capsule sterilization canister, and of the Flight Spacecraft
at encounter, the aim-points for the Planetary Vehicle trajectory have
been biased so as to have a high probability of obtaining a nonimpact
trajectory. The Centaur booster includes a retro capability, which, after
separation, will be activated to ensure thé probability of impact with

Mars of 0.5 X 10™° or less. With the Planetary Vehicle on a nonimpact
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trajectory at the time each of the capsule canister sections (forward

and aft) are separated, the probability of their impacting Mars at encoun-

ter is 0.5 X 107°.

The majority of the contributions to the total probability of planet
contamination caused by the Flight Capsule is assigned to capsule con-
tractor. However, the separation mechanism is designed to a reliability
factor of 0.999999+ and ensures the probability of malfunction resulting

in violation of the biological barrier as no greater than 0.6 X 1079,

Biasing the aim-points results in a probability of accidental impact of
the Flight Spacecraft at encounter of 1 X 10-5 or less. The probability
of accidental impact of the spacecraft from orbit decay in less that

50 years will be no greater than 2 X 10-5. Insertion command will not
be given unless the resulting orbit satisfies this constraint. The

final aim point selection is discussed in Section 2.4.

Contamination from propulsion system exhaust products will not exceed the
probablity of 1 X 10_5. The orbit insertion, orbit trim, and attitude
control propulsion systems.and components will be sterilized per JPL speci-

fication XS0-30275-TST-A to reduce the probability of contamination from

emissions to 0.4 X lO"5

, 0.4 X 1075 and 0.2 X 107, respectively.
Analysis, as discussed in Section 3.3, Volume B, indicates that the biolo-
gical contamination on the spacecraft external surfaces and protrusions
subject to meteoroid impact should be reduced to meet the probability

allocation of 2 X 1079, The analysis is based on the meteoroid environment
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presented in Section 2.2 of this volume. Considerable additional analy-
tical work to evaluate all aspects of this problem more thoroughly should
be performed before specific constraints are imposed on portions of the

spacecraft other than propulsion systems.
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3.12 VOYAGER FLIGHT-EQUIPMENT CLEANLINESS

3.12.1 Scope

Suggested procedures for cleanliness are presented in this section. Cleanli-
ness is concerned with contamination that could adversely affect the mission.
Two types of contamination, particulate and biological, are of special con-
cern. Implications of control of the biological contamination have been

presented in the previous section.

Particulate contamination has had many traceable and undesirable effects.

It has been the cause of electrical systems failures where high-contact
resistance could not be tolerated. It has been the significant cause of
organic- and metallic-coating failures. The broad base of currently identi-
fied particulate contaminates has been responsible for lack of specification
performance in parts fitted to microtolerances. Particulate contaminations
carried aloft are suspected of causing both temporary and permanent mal-
functions in the electrical and electronic systems, in various sensors,

and in mechanical devices. Removal of these particulates is the object

of the cleanliness process efforts. Procedures for obtaining cleanliness
are effective to the extent that a proper organization for implementation
and control has been established, and that people connected with any

aspect of a cleanliness program have been properly selected, trained, and
motivated. Cleanroom facilities will enable the spacecraft to undergo
months of assembly and test, in a condition of total access, without
acquiring an unacceptable particulate load from airborne sources. All
particulate matter, as well as biological, will be reduced for a given

class of cleanroom if the flow is vertical rather than horizontal.
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3.12.2 Applicable Documentation

1)

2)

5)

8)

NPC 200-2, "Quality Program Provisions for Space Systems Contractors."
JPL Specification GMU-50387-GEN, "General Specification, Contamination
Control of Flight Hardware, Spacecraft Control Flight Components."
(Preliminary Draft)

Sandia Document SCTM 147-63(25), "Present Practices in the Verifica-
tion of Cleanliness."

JPL Specification GMV-50004-PRS, "Process Specification, Cleaning and
Contamination Control Procedures for Attitude-Control Gas-Actuator
System."

JPL Specification GMV-50005-PRS, "Process Specification, Sampling
Procedures for Fluid Contamination Control."

D2-100411-1, "Cleaning Reaction Control and Propulsion Subsystem
Parts."

D2-100358-1, "Cleaning of Subassemblies and Parts Prior to Final
Assembly in Class-100,000 Clean Rooms."

Federal Standard No. 209. Clean Room and Work Station Requirements,

Controlled Environment.
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3.12.3 Cleanliness Procedures

1)

After a trial assembly of all mechanical interfaces, the Flight
Spacecraft equipment shall be disassembled to its lowest practical
level, cleaned, and reassembled in a Class-100,000 downflow facility
(D2-100358-1). Equipment components that illustrate a lowest prac-
tical level of disassembly are such items as circuit cards and
hermetically-sealed instruments. If, after receipt from another
facility, such components are found to be externally contaminated,
they will be cleaned externally to meet the conditions of cleanroom
assembly. All components from subcontractors will be required to
meet or better these assembly conditions. 1In some cases, the nature
of the product will demand more stringent control; i.e., in the

case of the gyros at least a Class-100 bench environment (Fed. Std.
209) will be required.

The liquid and gaseous elements of the reaction control and propul-
sion subsystems and associated components of these systems will be
internally precleaned and then assembled in a Class-100 environment.
Procedures for cleaning, inspection, packaging and handling of the
subsystems and their components are contained in Boeing document
D2-100411-1. Assembled systems will be post-checked in accordance
with procedures and standards in D2-100411-1. Failure to meet the
standards will result in disassembly and reprocessing.

All remaining Flight Spacecraft components will be cleaned, inspected,
packaged, and shipped in accordance with procedures described in

Boeing document D2-100358-1.
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3.13 MAGNETICS

The influence of magnetics on the Voyager program is felt in the areas of:
requirements, subsystems, system integration, design control, and facilities.
It should be noted that magnetics in the sense discussed here is limited to
slowly changing, quasi-static fields and specifically not a.c. or rf. This
excludes radio frequency interference (RFI) and electrical interferences
(EI) as used in aerospace design. It also leads to the most important
underlying requirement for magnetic cleanliness, the magnetometer's measure-
ment of interplanetary and Mars magnetic fields. These magnetometers
measure about once a minute throughout the flight. Although this purpose

is specifically stated to be a secondary objective of the Voyager program
and tertiary objective of the 1971 Mission, the simplicity, lightness, and
space experience with the magnetometers suggests the continuance of magnetic

measurements.

The magnetic requirements are illustrated in Table 3.13-1. They are
determined by scientific interest in magnetic fields, the possibility of
destabilization of the vehicle due to field interaction, and by the speci-
fications imposed in the contract. In the area of scientific interest,

the Mariner IV detection of no magnetic dipole of Mars may reduce somewhat
the concern for magnetic measurements as a scientific mission. However,
interplanetary fields change with time as well as position and corroborating
data about the Mars magnetic field is still very valuable. An examination
was made of magnetic torques that might upset the vehicle or use up attitude
control propellant. This torque is caused by the residual magnetic dipole
of the spacecraft in the ambient field, Considering the spacecraft dipole

moment to be 104 dyne-cm/gauss and the ambient field to be 100 gamma,
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TABLE 3.13-1

" MAGNETI

C REQUIREMENTS

Scientific Interest

Measure Interplanetary Fields

Measure Mars Field (in orbit)

Vehicle Stabilization

Field Interaction

Specifications

Materials
Magnitudes

Stability

Stray Fields

Design Verification

0 to 20 gamma

20 (to 5000) gamma

Maximum <1076 pound-feet

Nonmagnetic whenever possible, all evaluated
<1 gamma at 3 times "assembly" dimension
Change <x 10 for 25 ©Oersted on spacecraft

Change< x 10 for 100 oersted on assemblies/
components

Change <x 1 gamma at 2 feety 'S5 gamma at 1
meter

Map perm and current fields of spacecraft
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the maximum torque, T = M x B ‘~"lO_6 foot-pounds. This torque is

trivial in vehicle stabilization.

The magnetic environment in Figure 3.13-1 shows on a single logarithmic
scale the relationships between gauss, gamma, and oersted for the nine
decades (or orders of magnitude) pertinent to Voyager. It starts at the
surface of Mars, now known to have no magnetic dipole and proceeds along

the irregular line indicating the uncertainty in the field both for Mars and
interplanetary space. The interplanetary field then blends into the well-
defined field of the Earth. The scale of sizes of the spacecraft and its
subsystems are indicated also because the specifications for the perming and
deperming fields and the detectable changes in the fields are related to
these dimensions. And, finally, the range and precision of the magnetometer
for the Mariner IV, O to 350 *+ 0.5 gamma is shown in solid lines. The

potential range to 20,000 gamma is shown dotted.

Table 3.13-2 lists the spacecraft subsystems in the order of the Phase II
Voyager program breakdown structure. Magnetic components have been
identified for these subsystems. An estimate of the expected field
strength at three times the assembly dimension is listed. Four of the
systems probably will surpass the less than 1 gamma specification.
Specifically, an examination of these systems now indicates unavoidable
excessive local fields (at three times dimension of "assembly") will be
caused by the traveling wave (x 10 too great), the attitude control motor

(x 3) and the autopilot and CC&S electronics (x 5). However, the fields
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TABLE 3,13-2

SUBSYSTEMS

Subsystems

Telecommunications
Attitude Reference
Autopilot

Reaction Control
CC&S

Electrical Power
Structures
Mechanisms
Temperature Control
Pyrotechnics

Cables & Tubing
Midcourse Propulsion
Injection Propulsion

Science Payload

Field at (Assy X 3)

Critical Magnetic Components Gamma
Traveling-Wave-Tube Power Converter 10
Gyro, Accelerometer, Power 3
Electronics 3
Valve Actuators <1
Magnetic Memory, Nickel Ribbons 5
Solar Panel, Power Conditioning ]
None 0
Actuators, Motors, Bearings <1
None (provided that special louver <1
actuators are used)

None <l
Loops, leakage

Thrust Chamber, Solenoids <1
None <1
Actuators, Motors <l
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due to these items are expected to be characteristic of higher order
multipoles (quadrpoles or higher) so that their strength will diminish
with distance at rates exceeding that associated with a dipole (inverse
cube of distance). For that reason, these systems are not expected to
disturb the magnetometer measurements at the magnetometer's position.
This is indicated in Table 3.13-3 where Voyager magnetic properties are

compared with those of Mariner 1IV.

To ensure that the subsystems and systems will measure up to the require-
ments and performances stated above, a magnetics control plan includes
four essential elements.

1) Nonmagnetic materials are specified throughout. Whenever the design
cannot avoid magnetic materials, the requirements for them must be
justified in detail and specific project authorization must be
obtained.

2) The proposed designs are evaluated by superimposing the fields pro-
duced by the several subsystems by vector-addition of the fields.
This vector summing of the fields would be exact except for the
presence of ferromagnetic material as components of some of the
subsystems.

3) Subsystems are tested as necessary to verify -design evaluation.

All subsystems will be depermed through application of peak fields
of 200 oersteds at 60 cps. The test procedure requires subsequent
application of a 100-oersted magnetizing force field, and mapping

of the resultant magnetic field to demonstrate that residual

fields are less than 1 gamma at 2 meters.
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TABLE 3.13-3

SPACECRAFT INTEGRATION

Magnetic Environment At Magnetometer Voyager Mariner IV
Estimated Total Field 109 30 ¥
Voyager Specification RQMT undefined

Magnetic-Field Stability +1ly toy

Field Stability Rather Than Field Magnitude Is The Critical Parameter In
Magnetic Mapping of Space.

Anticipated Magnetometer Measurement Capability:

1+

35CY +.1% of range

-+

20,000.Y +.1% of range
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4) The spacecraft will be tested by first applying a 25-oersted magnetizing
force fields. Mapping will be performed to demonstrate that residual
fields are less than 1 gamma at 8 meters. The mapping will then be

repeated while the spacecraft is operated under rated power.

To verify the magnetic specifications on the spacecraft and the subsystems,
they must be tested in a facility capable of mapping, perming, and deperming.

(See Table 3.13-4).

A Helmholtz or Braumbek orthogonal coil system is required that would
maintain a uniform (+1 percent of center field at 25-foot radius), low
(#1 Y ) within 2-foot radius, and stable (41 Y ) magnetic field throughout
a 50-foot sphere. In addition, a separate set of perm-deperming coils
capable of providing a 150 oersted (peak) field at 60 cps for several

seconds would be required.

An alternative to the 50-foot facility may be considered if the deployable
members are not magnetically tested with the spacecraft body. Solar panels
and booms contribution to magnetic fields at the magnetometer is expected to
be less than 1 Y. Individual magnetic verification of the deployable
assemblies coupled with analytical predictions could produce an acceptable
magnetic verification program for the measurements and reduce (to one-half

in size) the facility requirement.
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3.14 SPACE RADIATION EFFECTS ON THE VOYAGER SYSTEM

3.14.1 Scope

This section is concerned with the radiation effects on components and
assemblies and the types of system responses or failures that are likely

to ensue from space radiation predicted for the Voyager mission. A large
amount of data already exists on the basic radiation responses of electron-
jcs and materials intended for use in Voyager. More data is being obtained
on specific devices and materials under specific test conditions relat-
able to the Voyager radiation criteria. Also, a broad competence in
radiation vulnerability and system hardening has been developed at Boeing
over the years, so that, with the existing data, an integrated design can
be obtained in which radiation responses are accounted for and do not

lead to unacceptably low reliability values. The radiation effects like-
ly to be most important to the Voyager system are surface and ionization
effects rather than bulk damage to electronics. These surface phenomena
have only recently come under study, so there is yet much component data

to be obtained. However, enough data exists to indicate that high-gain
low current transistors and power supply solar cells assemblies, diodes,
and transistors may be candidates for scrutiny and for component selection
on the basis of radiation response. Preliminary system analysis of the
subsystem block diagrams indicates that the radiation effects problems

are soluble because they are being attacked at the system level early

in the design.

3.14.2 Applicable Documents

1) JPL Inter-Office Memo (with attachment) D-62-65 (Boeing No. 5-7680-

LA-119).

3-284




3)

BOoOSING

D2-82709-1

MIT Lincoln Labs, 5 Feb. 1965, Group Report 1965-11 by A. Stanley.
"Space Radiation Effects on High Gain Low Current Silicon Planar
Transistors."

Boeing Document D2-90412. "A Study of Solar Cell Space System
Radiation Vulnerability," by R. Brown.

Boeing Document D2-90463. "Radiation Effects on Semiconductor Sur-
faces -- A Survey of Existing Evidence and Proposed Experiments" by
J. F. Aschner, March 3, 1964.

Boeing Document D2-90570. "Proton and Electron Permanent Damage

in Silicon Semiconductor Devices," by R. R. Brown, September 23, 1964.

Boeing Document D2-36222-1. "Experimental Results of Radiation Damage

in Solar Cells," by R. J. Tallent.
Boeing Document D2-36359-1. "Space Radiation Tests on Reflecting
Surfaces -- Final Report (Contr. JPL-950998)," R. Gillette, R. Brown,

2 June 1965.

3.14.3 Semiconductor Device Responses

3.14.3.1 Bulk Damage

Geomagnetically trapped protons and electrons, solar-event protons, and

alpha particles can cause permanent displacement damage and both perman-

ent and temporary surface ionization damage to transistors. Because the

high-energy proton and electron environment levels for the Voyager missions

are much lower than the values shown by experiment to be needed for signi-

ficant bulk damage in many devices, it is felt that these effects will

not present a serious system problem.
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3.14.3.2 Ionization and Surface Effects

For the Voyager, ionization and surface effects are likely to be impor-
tant mechanisms. Ionization from charged particles, including those having
energies below the displacement threshold, can cause temporary loss of
transistor gain, increase in leakage current, and reduction in breakdown
voltage. Failure to recognize and account for these surface ionization

effects could lead to malfunctions.

Data indicate that special surface treatments and manufacturing techniques
can reduce these effects and therefore selection and screening of devices
are possible for specific applications (Ref. MIT 1965-11). For example,
leakage current of the Sperry 164N2 transistor increased from few nano-
amperes (at about 10° electrons/cm2 -sec) to microamperes after irradiation

3 electrons/cm2 total fluence. This is a worst case and most other

with 10°
devices did not degrade so much. The 2N930, which is proposed for use in
the Voyager Autopilot System, changed its leakage current only a few

nanoamperes under the same irradiation conditions.

Experimental data show that NPN silicon transistors with low initial
leakage current (unirradiated) tend to respond to dose rate and recover
quickly, whereas those with high initial leakage currents tend to respond
to total dose and to recover slowly (ref. D2-90463). All these facts lead

to device selection criteria for space applications.
Surface ionization damage affects devices in the small-effect low-dose

part of the damage curve. The Voyager mission will expose the electron-

ics to sufficient particle fluence and flux so that account must be taken
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of the effects in the design, especially for extended Mars orbiting

missions.

3.14.3.3 Solar Cells

Solar cells are discussed in detail elsewhere in the document. However,
they are known to be radiation sensitive, and so are mentioned here as
well. Solar cell assemblies will be affected by both the solar wind (low

energy) protons and by solar ultraviolet radiation.

In general, N/P silicon cells selected for the preferred design are more
radiation resistant than P/N, as measured by changes in short circuit cur-

rent and open circuit voltage.

Much of the loss in solar-cell output in the devices tested in the past
has been shown to be due to cover glass transmission change (D2-36222-1
and D2-90412). 8102 glass covers can be expected to darken appreciably
during the flight to Mars, but experimental data indicate that quartz

covers for the solar cells will not be degraded by the assumed fluences.

3.14.3.4 "Radiation-Preferred" Electronics Parts List

A detailed evaluation of electronic components on the JPL-preferred

parts list ZPP-2061-PPL-F has been made, and the results given in a
Boeing memo (2-7861-20-400, 3 May 1965), "Identification of Radiation-
Preferred Electronics." In addition to discrete transistors and diodes,
integrated circuits, SCR's, Zener diodes, FET's, capacitors, resistors,
and insulating materials are assessed. These data include safety margins,

or ratios of damage threshold levels to mission environment levels, for
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the Voyager. These results have been included as an attachment to JPL

Inter-Office Memo D-62-65 (Boeing No. 5-7680-LA-119).

3.14.4 Voyager System Materials

Materials are discussed throughout the entire document, but a few summary
remarks are made here on radiation effects, because these effects present

system analysis and design problems.

Insulating materials or dielectrics in electronic systems may be degraded
by radiation and lead to failures. Teflon, PVC, and mylar are examples

of radiation-sensitive materials, as determined by laboratory tests.

Other materials problems include thermal control surface materials, solar-

cell reflector surfaces, sealants, and other organics that are exposed.

Boeing research studies, Lunar Orbiter engineering data, and Mariner IV
experience have indicated that the performance of thermal control coat-
ings used in the Mars mission will be quite dependent on the combined
effects of particulate (proton and electron) and electromagnetic (ultra-

violet) radiation on absorptance and emittance properties of the coatings.

The radiation effects on thermal control coatings arise from both ionization
and lattice defect production on the material. Color centers are formed
that act as light-absorption sites. A Beoing-developed barrier-layer

anodic coating on aluminum has been shown far more resistant (i.e., stable)
than the others tested, which included vapor-deposited aluminum, bright

aluminum, Zn0/KSi0O3, and ZnO/LTV-602 (Ref. D2-36359-1). This barrier-layer
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anodic coating will function in the radiation environment expected in a
Mars mission. Figure 3.14-1 shows some of the test results. Ultraviolet
irradiation produces effects similar to particle radiation, and prelimin-
ary studies indicate that these effects act synergistically with the
particulate radiation effects. Presently, studies are beginning at
Boeing on contract NAS 5-9650, to study the combined environmental effects
of particles, UV, vacuum, and temperature on selected thermal control
coatings. Results of these studies will lead to design data to ensure

high reliability of the Voyager thermal control system.

3.14.5 System Responses

-«

3.14.5.1 Power Supplies

All electronic systems in the Voyager craft use power supplies with
diodes and transistors, and ultimately depend on solar cells for power.
Responses of these devices can lead to lowered performance of the power

systems.

The Mariner vehicle's problem of acquiring Canopus in its star tracker
and the encoder problems encountered shortly after launch were due to
Van Allen belt radiation-induced effects in the optical or electronic
systems, or both. The trapped radiation dose rates (10-100 rad/hr) are
high enough to give ionization and surface effects in semiconductors,
which can lead to reduction of transistor gain and increased diode leak-
age currents. A circuit analysis of the Marine IV star seeker system was

made by Boeing to assess the radiation vulnerability of this type of

equipment (also used on Lunar Orbiter). It was found that a power supply
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diode type is being used that has a high reverse leakage current under
radiation. The response to trapped radiation dose rates would be high
enough to decrease power supply voltages to the Mariner IV electronics.
Another of the potential weak links in the system was found to be surface-

induced gain changes in certain amplifying transistors.

3.14.5.2 Central Computer and Sequencer

Radiation-induced permanent and temporary changes in low current gain
and reverse leakage current in the semiconductor elements will reduce
reliability and could cause malfunctions. A preliminary analysis of the
preferred design has not indicated any radiation-soft blocks. However,
as the detailed design evolves, the constraints imposed by radiation
hardening requirements will be applied, and trades will be involved.
Device selection criteria will include low radiation response. Block
diagram outputs and inputs will be considered to be sure that radiation-
induced spurious signals do not exceed allowed ranges for proper per-
formance. For example, if some transistor gain decreases by 10 percent,
the circuit will be designed so that it still functions and produces an
output signal close enough to the correct one so that the system will
function. These are well known hardening techniques from missile
technology. Each circuit or system requires its own detailed analysis
in terms of radiation vulnerability. Such an analysis involves consi-
deration of the environment, the mission, system failure modes, component
responses, and component interconnections. Many volumes of test data
have been accumulated at Boeing on component and circuit response to
radiation from contracts and company-sponsored research. This data and

circuit design information is available for integrating the radiation
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vulnerability specifications into the original design of guidance and

communication electronics for Voyager.

3.14.5.3 Attitude Reference and Autopilot

The same general considerations apply to this subsystem as to the central
computer and sequencer already discussed. The use of linear amplifying
circuits (some are integrated circuits) implies careful selection to avoid
gain degradation, and to obtain well-balanced difference circuits for com-
mon-mode rejection of radiation effects. It also means design consideration
must be given to reducing effects of power supply voltage changes, by feed-
back, differencing, or other means. An integrated approach is made to

the circuit design, in which radiation response is considered as a system

constraint along with the other factors.

A potential problem area for a star tracker is the increase in phototube
dark current, due to radiation interactions on the photocathode. Tests
have indicated that luminescence in the glass components will lead to
spurious currents in a star tracker input circuit for up to 15 minutes
after irradiation at a 30 rad/hr rate. Careful balancing of components
and design to reject common mode noise can reduce the system response.
This type of problem should occur only during near-Earth or near-Mars
maneuvering. It may be possible to program the Canopus-seeking operation

at a time after the radiation belts are traversed.
Similar considerations hold for the sun-seeker subsystem, where the

photocell response to radiation becomes a part of the circuit design.

Much CdS photocell data exists for this analysis.
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Mechanical instruments, such as reference gyros, are relatively hard to
radiation at the dose levels to be encountered on the Voyager mission.
However, gyro power supplies may use high-power diodes or transistors
whose performance degrades, and whose outputs fall below acceptable
limits. By device selection, and or by use of switching-type power-
regulator circuits, these difficulties are overcome. The organic
materials in a gyro are normally well enough shielded to avoid serious
degradation of properties, but a relatively simple gyro and radiation-
resistant materials were selected for the preferred design to minimize

the effects.

3.14,5.4 Telecommunications

The power supply is probably the radiation-weak link in the communi-
cation subsystem, but linear and power devices of the transmitter also
need consideration. Device selection and hardened circuit design tech-

niques are applicable, so that no insoluble problem is anticipated.
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tion engine.
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equipment packages.

Selection of the thrust vector control tech-
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Effect of heat soak sterilization on equipment,
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